Math1 regulates development of the sensory epithelium in the mammalian cochlea (original) (raw)

References

  1. Bryant, J., Goodyear, R.J. & Richardson, G.P. Sensory organ development in the inner ear: molecular and cellular mechanisms. Br. Med. Bull. 63, 39–57 (2002).
    Article CAS PubMed Google Scholar
  2. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet. 12, 390–397 (1996).
    Article CAS PubMed Google Scholar
  3. Bermingham, N.A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841 (1999).
    Article CAS PubMed Google Scholar
  4. Zheng, J.L. & Gao, W.Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3, 580–586 (2000).
    Article CAS PubMed Google Scholar
  5. Shailam, R. et al. Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J. Neurocytol. 28, 809–819 (1999).
    Article CAS PubMed Google Scholar
  6. Lanford, P.J., Shailam, R., Norton, C.R., Gridley, T. & Kelley, M.W. Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J. Assoc. Res. Otolaryngol. 1, 161–171 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  7. Chen, P., Johnson, J.E., Zoghbi, H.Y. & Segil, N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129, 2495–2505 (2002).
    Article CAS PubMed Google Scholar
  8. Rubel, E.W. Ontogeny of structure and function in the vertebrate auditory system. in Handbook of Sensory Physiology, Vol. IX (ed. Jacobson, M.) 135–237 (Springer, New York, 1978).
    Google Scholar
  9. Rio, C., Dikkes, P., Liberman, M.C. & Corfas, G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J. Comp. Neurol. 442, 156–162 (2002).
    Article CAS PubMed Google Scholar
  10. Peters, K., Ornitz, D., Werner, S. & Williams, L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol. 155, 423–430 (1993).
    Article CAS PubMed Google Scholar
  11. Mueller, K.L., Jacques, B.E. & Kelley, M.W. Fibroblast growth factor signaling regulates pillar cell development in the organ of Corti. J. Neurosci. 22, 9368–9377 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  12. von Bartheld, C.S. et al. Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat. Development 113, 455–470 (1991).
    CAS PubMed Google Scholar
  13. Bianchi, L.M., Liu, H., Krug, E.L. & Capehart, A.A. Selective and transient expression of a native chondroitin sulfate epitope in Deiters' cells, pillar cells, and the developing tectorial membrane. Anat. Rec. 256, 64–71 (1999).
    Article CAS PubMed Google Scholar
  14. Morrison, A., Hodgetts, C., Gossler, A., Hrabe de Angelis, M. & Lewis, J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech. Dev. 84, 169–172 (1999).
    Article CAS PubMed Google Scholar
  15. Coppens, A.G., Kiss, R., Heizmann, C.W., Schafer, B.W. & Poncelet, L. Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development. Brain Res. Dev. Brain Res. 126, 191–199 (2001).
    Article CAS PubMed Google Scholar
  16. Rau, A., Legan, P.K. & Richardson, G.P. Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J. Comp. Neurol. 405, 271–280 (1999).
    Article CAS PubMed Google Scholar
  17. El-Amraoui, A., Cohen-Salmon, M., Petit, C. & Simmler, M.C. Spatiotemporal expression of Otogelin in the developing and adult mouse inner ear. Hear. Res. 158, 151–159 (2001).
    Article CAS PubMed Google Scholar
  18. Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell. Biol. 137, 1287–1307 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  19. Cernuda-Cernuda, R. & Garcia-Fernandez, J.M. Structural diversity of the ordinary and specialized lateral line organs. Microsc. Res. Tech. 34, 302–312 (1996).
    Article CAS PubMed Google Scholar
  20. Helms, A.D., Abney, A.L., Ben-Arie, N., Zoghbi, H.Y. & Johnson, J.E. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127, 1185–1196 (2000).
    CAS PubMed Google Scholar
  21. Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G. & Evan, G.I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  22. Mattioni, T., Louvion, J.F. & Picard, D. Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol. 43, 335–352 (1994).
    Article CAS PubMed Google Scholar
  23. Picard, D. Regulation of protein function through expression of chimaeric proteins. Curr. Opin. Biotechnol. 5, 511–515 (1994).
    Article CAS PubMed Google Scholar
  24. Lanford, P.J. et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat. Genet. 21, 289–292 (1999).
    Article CAS PubMed Google Scholar
  25. Zine, A., Van De Water, T.R. & de Ribaupierre, F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127, 3373–3383 (2000).
    CAS PubMed Google Scholar
  26. Haddon, C., Jiang, Y.J., Smithers, L. & Lewis, J. Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125, 4637–4644 (1998).
    CAS PubMed Google Scholar
  27. Haddon, C. et al. Hair cells without supporting cells: further studies in the ear of the zebrafish mind bomb mutant. J. Neurocytol. 28, 837–850 (1999).
    Article CAS PubMed Google Scholar
  28. Riley, B.B., Chiang, M., Farmer, L. & Heck, R. The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2.1. Development 126, 5669–78 (1999).
    CAS PubMed Google Scholar
  29. Zheng, J.L., Shou, J., Guillemot, F., Kageyama, R. & Gao, W.Q. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127, 4551–4560 (2000).
    CAS PubMed Google Scholar
  30. Zine, A. et al. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J. Neurosci. 21, 4712–4720 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  31. Lin, M.H. and Kopan, R. Long-range, nonautonomous effects of activated Notch1 on tissue homeostasis in the nail. Dev. Biol. 263, 343–359 (2003).
    Article CAS PubMed Google Scholar
  32. Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  33. Micchelli, C.A. et al. γ-Secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. FASEB J. 17, 79–81 (2003).
    Article CAS PubMed Google Scholar
  34. Cheng, H.T. et al. γ-Secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 130, 5031–5042 (2003).
    Article CAS PubMed Google Scholar
  35. Lewis, J. Rules for the production of sensory cells. Ciba Found. Symp. 160, 25–39 (1991).
    CAS PubMed Google Scholar
  36. Corwin, J.T., Jones, J.E., Katayama, A., Kelley, M.W. & Warchol, M.E. Hair cell regeneration: the identities of progenitor cells, potential triggers and instructive cues. Ciba Found. Symp. 160, 103–120 (1991).
    CAS PubMed Google Scholar
  37. Adam, J. et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125, 4645–4654 (1998).
    CAS PubMed Google Scholar
  38. Goodyear, R., Holley, M. & Richardson, G. Hair and supporting-cell differentiation during the development of the avian inner ear. J. Comp. Neurol. 351, 81–93 (1995).
    Article CAS PubMed Google Scholar
  39. Kelley, M.W., Talreja, D.R. & Corwin, J.T. Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J. Neurosci. 15, 3013–3026 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  40. Kelley, M.W., Xu, X.M., Wagner, M.A., Warchol, M.E. & Corwin, J.T. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119, 1041–1053 (1993).
    CAS PubMed Google Scholar
  41. Kimberly, W.T. & Wolfe, M.S. Identity and function of γ-secretase. J. Neurosci. Res. 74, 353–360 (2003).
    Article CAS PubMed Google Scholar
  42. Cole, L.K. et al. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J. Comp. Neurol. 424, 509–520 (2000).
    Article CAS PubMed Google Scholar
  43. Kelley, M.W. & Bianchi, L.M. Development and neuronal innervation of the organ of Corti. in Handbook of the Mouse Auditory Research: From Behavior to Molecular Biology (ed. Willott, J.F.) 137–156 (CRC, New York, 2001).
    Chapter Google Scholar
  44. Chen, P. & Segil, N. p27Kip1 links proliferation to morphogenesis in the developing organ of Corti. Development 126, 1581–1590 (1999).
    CAS PubMed Google Scholar
  45. Morsli, H., Choo, D., Ryan, A., Johnson, R. & Wu, D.K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 18, 3327–3335 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  46. Montcouquiol, M. & Kelley, M.W. Planar and vertical signals control cellular differentiation and patterning in the mammalian cochlea. J. Neurosci. 23, 9469–9478 (2003).
    Article CAS PubMed PubMed Central Google Scholar

Download references