Math1 regulates development of the sensory epithelium in the mammalian cochlea (original) (raw)
References
Bryant, J., Goodyear, R.J. & Richardson, G.P. Sensory organ development in the inner ear: molecular and cellular mechanisms. Br. Med. Bull.63, 39–57 (2002). ArticleCASPubMed Google Scholar
Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet.12, 390–397 (1996). ArticleCASPubMed Google Scholar
Bermingham, N.A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science284, 1837–1841 (1999). ArticleCASPubMed Google Scholar
Zheng, J.L. & Gao, W.Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci.3, 580–586 (2000). ArticleCASPubMed Google Scholar
Shailam, R. et al. Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J. Neurocytol.28, 809–819 (1999). ArticleCASPubMed Google Scholar
Lanford, P.J., Shailam, R., Norton, C.R., Gridley, T. & Kelley, M.W. Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J. Assoc. Res. Otolaryngol.1, 161–171 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chen, P., Johnson, J.E., Zoghbi, H.Y. & Segil, N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development129, 2495–2505 (2002). ArticleCASPubMed Google Scholar
Rubel, E.W. Ontogeny of structure and function in the vertebrate auditory system. in Handbook of Sensory Physiology, Vol. IX (ed. Jacobson, M.) 135–237 (Springer, New York, 1978). Google Scholar
Rio, C., Dikkes, P., Liberman, M.C. & Corfas, G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J. Comp. Neurol.442, 156–162 (2002). ArticleCASPubMed Google Scholar
Peters, K., Ornitz, D., Werner, S. & Williams, L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol.155, 423–430 (1993). ArticleCASPubMed Google Scholar
Mueller, K.L., Jacques, B.E. & Kelley, M.W. Fibroblast growth factor signaling regulates pillar cell development in the organ of Corti. J. Neurosci.22, 9368–9377 (2002). ArticleCASPubMedPubMed Central Google Scholar
von Bartheld, C.S. et al. Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat. Development113, 455–470 (1991). CASPubMed Google Scholar
Bianchi, L.M., Liu, H., Krug, E.L. & Capehart, A.A. Selective and transient expression of a native chondroitin sulfate epitope in Deiters' cells, pillar cells, and the developing tectorial membrane. Anat. Rec.256, 64–71 (1999). ArticleCASPubMed Google Scholar
Morrison, A., Hodgetts, C., Gossler, A., Hrabe de Angelis, M. & Lewis, J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech. Dev.84, 169–172 (1999). ArticleCASPubMed Google Scholar
Coppens, A.G., Kiss, R., Heizmann, C.W., Schafer, B.W. & Poncelet, L. Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development. Brain Res. Dev. Brain Res.126, 191–199 (2001). ArticleCASPubMed Google Scholar
Rau, A., Legan, P.K. & Richardson, G.P. Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J. Comp. Neurol.405, 271–280 (1999). ArticleCASPubMed Google Scholar
El-Amraoui, A., Cohen-Salmon, M., Petit, C. & Simmler, M.C. Spatiotemporal expression of Otogelin in the developing and adult mouse inner ear. Hear. Res.158, 151–159 (2001). ArticleCASPubMed Google Scholar
Cernuda-Cernuda, R. & Garcia-Fernandez, J.M. Structural diversity of the ordinary and specialized lateral line organs. Microsc. Res. Tech.34, 302–312 (1996). ArticleCASPubMed Google Scholar
Helms, A.D., Abney, A.L., Ben-Arie, N., Zoghbi, H.Y. & Johnson, J.E. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development127, 1185–1196 (2000). CASPubMed Google Scholar
Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G. & Evan, G.I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res.23, 1686–1690 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mattioni, T., Louvion, J.F. & Picard, D. Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol.43, 335–352 (1994). ArticleCASPubMed Google Scholar
Picard, D. Regulation of protein function through expression of chimaeric proteins. Curr. Opin. Biotechnol.5, 511–515 (1994). ArticleCASPubMed Google Scholar
Lanford, P.J. et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat. Genet.21, 289–292 (1999). ArticleCASPubMed Google Scholar
Zine, A., Van De Water, T.R. & de Ribaupierre, F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development127, 3373–3383 (2000). CASPubMed Google Scholar
Haddon, C., Jiang, Y.J., Smithers, L. & Lewis, J. Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development125, 4637–4644 (1998). CASPubMed Google Scholar
Haddon, C. et al. Hair cells without supporting cells: further studies in the ear of the zebrafish mind bomb mutant. J. Neurocytol.28, 837–850 (1999). ArticleCASPubMed Google Scholar
Riley, B.B., Chiang, M., Farmer, L. & Heck, R. The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2.1. Development126, 5669–78 (1999). CASPubMed Google Scholar
Zheng, J.L., Shou, J., Guillemot, F., Kageyama, R. & Gao, W.Q. Hes1 is a negative regulator of inner ear hair cell differentiation. Development127, 4551–4560 (2000). CASPubMed Google Scholar
Zine, A. et al. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J. Neurosci.21, 4712–4720 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lin, M.H. and Kopan, R. Long-range, nonautonomous effects of activated Notch1 on tissue homeostasis in the nail. Dev. Biol.263, 343–359 (2003). ArticleCASPubMed Google Scholar
Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep.3, 688–694 (2002). ArticleCASPubMedPubMed Central Google Scholar
Micchelli, C.A. et al. γ-Secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. FASEB J.17, 79–81 (2003). ArticleCASPubMed Google Scholar
Cheng, H.T. et al. γ-Secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development130, 5031–5042 (2003). ArticleCASPubMed Google Scholar
Lewis, J. Rules for the production of sensory cells. Ciba Found. Symp.160, 25–39 (1991). CASPubMed Google Scholar
Corwin, J.T., Jones, J.E., Katayama, A., Kelley, M.W. & Warchol, M.E. Hair cell regeneration: the identities of progenitor cells, potential triggers and instructive cues. Ciba Found. Symp.160, 103–120 (1991). CASPubMed Google Scholar
Adam, J. et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development125, 4645–4654 (1998). CASPubMed Google Scholar
Goodyear, R., Holley, M. & Richardson, G. Hair and supporting-cell differentiation during the development of the avian inner ear. J. Comp. Neurol.351, 81–93 (1995). ArticleCASPubMed Google Scholar
Kelley, M.W., Talreja, D.R. & Corwin, J.T. Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J. Neurosci.15, 3013–3026 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kelley, M.W., Xu, X.M., Wagner, M.A., Warchol, M.E. & Corwin, J.T. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development119, 1041–1053 (1993). CASPubMed Google Scholar
Kimberly, W.T. & Wolfe, M.S. Identity and function of γ-secretase. J. Neurosci. Res.74, 353–360 (2003). ArticleCASPubMed Google Scholar
Cole, L.K. et al. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J. Comp. Neurol.424, 509–520 (2000). ArticleCASPubMed Google Scholar
Kelley, M.W. & Bianchi, L.M. Development and neuronal innervation of the organ of Corti. in Handbook of the Mouse Auditory Research: From Behavior to Molecular Biology (ed. Willott, J.F.) 137–156 (CRC, New York, 2001). Chapter Google Scholar
Chen, P. & Segil, N. p27Kip1 links proliferation to morphogenesis in the developing organ of Corti. Development126, 1581–1590 (1999). CASPubMed Google Scholar
Morsli, H., Choo, D., Ryan, A., Johnson, R. & Wu, D.K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci.18, 3327–3335 (1998). ArticleCASPubMedPubMed Central Google Scholar
Montcouquiol, M. & Kelley, M.W. Planar and vertical signals control cellular differentiation and patterning in the mammalian cochlea. J. Neurosci.23, 9469–9478 (2003). ArticleCASPubMedPubMed Central Google Scholar