Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex (original) (raw)
References
Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem.73, 355–382 (2004) ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998) ArticleCAS Google Scholar
Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol.135, 1457–1470 (1996) ArticleCAS Google Scholar
Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell88, 97–107 (1997) ArticleCAS Google Scholar
Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA94, 3736–3741 (1997) ArticleCASADS Google Scholar
Zhang, H., Saitoh, H. & Matunis, M. J. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol.22, 6498–6508 (2002) ArticleCAS Google Scholar
Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol.15, 435–467 (1999) ArticleCAS Google Scholar
Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA92, 2563–2567 (1995) ArticleCASADS Google Scholar
Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell108, 345–356 (2002) ArticleCAS Google Scholar
Johnson, E. S. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell106, 735–744 (2001) ArticleCAS Google Scholar
Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell8, 713–718 (2001) ArticleCAS Google Scholar
Pichler, A., Gast, A., Seeler, J. S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell108, 109–120 (2002) ArticleCAS Google Scholar
Kagey, M. H., Melhuish, T. A. & Wotton, D. The polycomb protein Pc2 is a SUMO E3. Cell113, 127–137 (2003) ArticleCAS Google Scholar
Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature376, 184–188 (1995) ArticleCASADS Google Scholar
Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem.270, 14209–14213 (1995) ArticleCAS Google Scholar
Joseph, J., Liu, S. T., Jablonski, S. A., Yen, T. J. & Dasso, M. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo . Curr. Biol.14, 611–617 (2004) ArticleCAS Google Scholar
Saitoh, H., Pizzi, M. D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem.277, 4755–4763 (2002) ArticleCAS Google Scholar
Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T. K. & Melchior, F. The RanBP2 SUMO E3 ligase is neither HECT nor RING type. Nature Struct. Mol. Biol.11, 984–991 (2004) ArticleCAS Google Scholar
Tatham, M. H. et al. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nature Struct. Mol. Biol.12, 67–74 (2004) Article Google Scholar
Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991) ArticleCAS Google Scholar
Lois, L. M. & Lima, C. D. Structures of the Small Ubiquitin-like MOdifier E1 activating enzyme provide insights into SUMO activation and the mechanism for E2 recruitment to E1. EMBO J.24, 439–451 (2005) ArticleCAS Google Scholar
Hamilton, K. S. et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure9, 897–904 (2001) ArticleMathSciNetCAS Google Scholar
Wu, P. Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J.22, 5241–5250 (2003) ArticleCAS Google Scholar
Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl Acad. Sci. USA101, 14373–14378 (2004) ArticleCASADS Google Scholar
Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae . J. Biol. Chem.280, 4102–4110 (2005) ArticleCAS Google Scholar
Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science286, 1321–1326 (1999) ArticleCAS Google Scholar
Leverson, J. D. et al. The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol. Biol. Cell11, 2315–2325 (2000) ArticleCAS Google Scholar
Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70, 503–533 (2001) ArticleCAS Google Scholar
Strickland, S., Palmer, G. & Massey, V. Determination of dissociation constants and specific rate constants of enzyme–substrate (or protein–ligand) interactions from rapid reaction kinetic data. J. Biol. Chem.250, 4048–4052 (1975) CASPubMed Google Scholar