The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae (original) (raw)

References

  1. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999)
    Article CAS PubMed Google Scholar
  2. Kile, B. T. et al. The SOCS box: a tale of destruction and degradation. Trends Biochem. Sci. 27, 235–241 (2002)
    Article CAS PubMed Google Scholar
  3. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003)
    Article ADS CAS PubMed Google Scholar
  4. Furukawa, M., Ohta, T. & Xiong, Y. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J. Biol. Chem. 277, 15758–15765 (2002)
    Article CAS PubMed Google Scholar
  5. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004)
    Article CAS PubMed Google Scholar
  6. Lyapina, S. et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382–1385 (2001)
    Article ADS CAS PubMed Google Scholar
  7. Pintard, L. et al. Neddylation and deneddylation of CUL-3 is required to target MEI-1/katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13, 911–921 (2003)
    Article CAS PubMed Google Scholar
  8. Kurz, T. et al. Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295, 1294–1298 (2002)
    Article ADS CAS PubMed Google Scholar
  9. McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993)
    Article CAS PubMed Google Scholar
  10. Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. & Mains, P. E. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14, 1072–1084 (2000)
    CAS PubMed PubMed Central Google Scholar
  11. Dow, M. R. & Mains, P. E. Genetic and molecular characterization of the Caenorhabditis elegans gene, mel-26, a postmeiotic negative regulator of mei-1, a meiotic-specific spindle component. Genetics 150, 119–128 (1998)
    CAS PubMed PubMed Central Google Scholar
  12. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000)
    Article ADS CAS PubMed Google Scholar
  13. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000)
    Article ADS CAS PubMed Google Scholar
  14. Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. A flexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23 (1996)
    Article CAS PubMed Google Scholar
  15. Meyer, H. H., Wang, Y. & Warren, G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21, 5645–5652 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  16. Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208–2214 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  17. Lammer, D. et al. Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. Genes Dev. 12, 914–926 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  18. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)
    Article ADS CAS PubMed Google Scholar
  19. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)
    Article ADS CAS PubMed Google Scholar
  20. Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002)
    Article ADS CAS PubMed Google Scholar
  21. Morimoto, M., Nishida, T., Nagayama, Y. & Yasuda, H. Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8–E3 ligase and regulates its stability. Biochem. Biophys. Res. Commun. 301, 392–398 (2003)
    Article CAS PubMed Google Scholar
  22. Zheng, J. et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10, 1519–1526 (2002)
    Article CAS PubMed Google Scholar
  23. Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1–SKP1 binding and SCF ligases. Mol. Cell 10, 1511–1518 (2002)
    Article CAS PubMed Google Scholar
  24. Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20, 4003–4012 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  25. Dharmasiri, S., Dharmasiri, N., Hellmann, H. & Estelle, M. The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J. 22, 1762–1770 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  26. Guthrie, C. & Fink, G. R. in Guide to Yeast Genetics and Molecular Biology (eds Abelson, J. N. & Simon, M. I.) (Academic, San Diego, California, 1991)
    Google Scholar
  27. Hofmann, K. Sensitive protein comparisons with profiles and hidden Markov models. Brief. Bioinform. 1, 167–178 (2000)
    Article CAS PubMed Google Scholar
  28. Jaquenoud, M., Gulli, M. P., Peter, K. & Peter, M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17, 5360–5373 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  29. Verma, R., Chi, Y. & Deshaies, R. J. Cell-free ubiquitination of cell cycle regulators in budding yeast extracts. Methods Enzymol. 283, 366–376 (1997)
    CAS PubMed Google Scholar

Download references