An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA (original) (raw)

References

  1. Green, R. & Lorsch, J. R. The path to perdition is paved with protons. Cell 110, 665–668 (2002)
    Article CAS Google Scholar
  2. Kisselev, L. L. & Buckingham, R. H. Translational termination comes of age. Trends Biochem. Sci. 25, 561–566 (2000)
    Article CAS Google Scholar
  3. Koshland, D. E. in The Enzymes (eds Boyer, P. D., Lardy, H. & Myrback, K.) 305–346 (Academic, New York, 1959)
    Google Scholar
  4. Bennett, W. S. Jr & Steitz, T. A. Glucose-induced conformational change in yeast hexokinase. Proc. Natl Acad. Sci. USA 75, 4848–4852 (1978)
    Article CAS ADS Google Scholar
  5. Caskey, C. T., Beaudet, A. L., Scolnick, E. M. & Rosman, M. Hydrolysis of fMet-tRNA by peptidyl transferase. Proc. Natl Acad. Sci. USA 68, 3163–3167 (1971)
    Article CAS ADS Google Scholar
  6. Zavialov, A. V., Mora, L., Buckingham, R. H. & Ehrenberg, M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10, 789–798 (2002)
    Article CAS Google Scholar
  7. Moazed, D. & Noller, H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989)
    Article CAS ADS Google Scholar
  8. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999)
    Article CAS Google Scholar
  9. Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W. & Rodnina, M. V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002)
    Article CAS Google Scholar
  10. Schmeing, T. M. et al. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nature Struct. Biol. 9, 225–230 (2002)
    CAS PubMed Google Scholar
  11. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)
    Article CAS ADS Google Scholar
  12. Agmon, I. et al. Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide-bond formation, chirality discrimination and antibiotics synergism. FEBS Lett. 567, 20–26 (2004)
    Article CAS Google Scholar
  13. Hansen, J. L., Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structural insights into peptide bond formation. Proc. Natl Acad. Sci. USA 99, 11670–11675 (2002)
    Article CAS ADS Google Scholar
  14. Burgi, H. B., Dunitz, J. D. & Shefter, E. Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 95, 5065–5067 (1973)
    Article CAS Google Scholar
  15. Radisky, E. S. & Koshland, D. E. Jr. A clogged gutter mechanism for protease inhibitors. Proc. Natl Acad. Sci. USA 99, 10316–10321 (2002)
    Article CAS ADS Google Scholar
  16. Klein, D. J., Moore, P. B. & Steitz, T. A. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340, 141–177 (2004)
    Article CAS Google Scholar
  17. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001)
    Article CAS ADS Google Scholar
  18. Weinger, J. S., Parnell, K. M., Dorner, S., Green, R. & Strobel, S. A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Struct. Mol. Biol. 11, 1101–1106 (2004)
    Article CAS Google Scholar
  19. Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9, 1345–1352 (2003)
    Article CAS Google Scholar
  20. Seila, A. C., Okuda, K., Nunez, S., Seila, A. F. & Strobel, S. A. Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction. Biochemistry 44, 4018–4027 (2005)
    Article CAS Google Scholar
  21. Scarlett, D. J., McCaughan, K. K., Wilson, D. N. & Tate, W. P. Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2. J. Biol. Chem. 278, 15095–15104 (2003)
    Article CAS Google Scholar
  22. Rawat, U. B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003)
    Article CAS ADS Google Scholar
  23. Frolova, L. Y. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020 (1999)
    Article CAS Google Scholar
  24. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004)
    Article CAS Google Scholar
  25. Weinger, J. S., Kitchen, D., Scaringe, S. A., Strobel, S. A. & Muth, G. W. Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′-OH at P-site position A76. Nucleic Acids Res. 32, 1502–1511 (2004)
    Article CAS Google Scholar
  26. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920 (2000)
    Article CAS ADS Google Scholar
  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS Google Scholar
  28. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)
    Article CAS Google Scholar
  29. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar

Download references