Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy (original) (raw)

References

  1. Marx, D. Throwing tetrahedral dice. Science 303, 634–636 (2004)
    Article CAS Google Scholar
  2. Zwier, T. S. The structure of protonated water clusters. Science 304, 1119–1120 (2004)
    Article CAS ADS Google Scholar
  3. Headrick, J. M. et al. Spectral signatures of hydrated proton vibrations in water clusters. Science 308, 1765–1769 (2005)
    Article CAS ADS Google Scholar
  4. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999)
    Article CAS ADS Google Scholar
  5. Kötting, C. & Gerwert, K. Proteins in action monitored by time-resolved FTIR spectroscopy. Chem. Phys. Chem. 6, 881–888 (2005)
    Article Google Scholar
  6. Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004)
    Article CAS Google Scholar
  7. Garczarek, F., Brown, L. S., Lanyi, J. K. & Gerwert, K. Proton binding within a membrane protein by a protonated water cluster. Proc. Natl Acad. Sci. USA 102, 3633–3638 (2005)
    Article CAS ADS Google Scholar
  8. de Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps quélletient en dissolution à l'aide de l'électricité galvanique. Ann. Chim. 58, 54–74 (1806)
    Google Scholar
  9. Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Edn Engl. 3, 1–19 (1964)
    Article Google Scholar
  10. Zundel, G. in The Hydrogen Bond—Recent Developments in Theory and Experiments (ed. Sandorfy, C.) 683–766 (Nort-Holland, Amsterdam, 1976)
    Google Scholar
  11. Birge, R. R. et al. Revised assignment of energy storage in the primary photochemical event in bacteriorhodopsin. J. Am. Chem. Soc. 113, 4327–4328 (1991)
    Article CAS Google Scholar
  12. Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. Natl Acad. Sci. USA 86, 4943–4947 (1989)
    Article CAS ADS Google Scholar
  13. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999)
    Article CAS Google Scholar
  14. Kandt, C., Schlitter, J. & Gerwert, K. Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys. J. 86, 705–717 (2004)
    Article CAS ADS Google Scholar
  15. Rammelsberg, R., Huhn, G., Lubben, M. & Gerwert, K. Bacteriorhodopsins intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37, 5001–5009 (1998)
    Article CAS Google Scholar
  16. Dioumaev, A. K. et al. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry 37, 2496–2506 (1998)
    Article CAS Google Scholar
  17. Shibata, M. & Kandori, H. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Biochemistry 44, 7406–7413 (2005)
    Article CAS Google Scholar
  18. Hayashi, S. & Ohmine, I. Proton transfer in bacteriorhodopsin: Structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method. J. Phys. Chem. B 104, 10678–10691 (2000)
    Article CAS Google Scholar
  19. Liu, K., Brown, M. G., Cruzan, J. D. & Saykally, R. J. Vibration-rotation tunneling spectra of the water pentamer: Structure and dynamics. Science 271, 62–64 (1996)
    Article CAS ADS Google Scholar
  20. Dencher, N. A., Sass, H. J., Buldt, G. Water and bacteriorhodopsin: structure, dynamics, and function. Biochim. Biophys. Acta 1460, 192–203 (2000)
    Article CAS Google Scholar
  21. Grudinin, S., Buldt, G., Gordeliy, V. & Baumgaertner, A. Water molecules and hydrogen-bonded networks in bacteriorhodopsin—molecular dynamics simulations of the ground state and the M intermediate. Biophys. J. 88, 3252–3261 (2005)
    Article CAS Google Scholar
  22. Le Coutre, J., Tittor, J., Oesterhelt, D. & Gerwert, K. Experimental evidence for hydrogen-bonded network proton transfer in bacteriorhodopsin shown by Fourier-transform infrared spectroscopy using azide as catalyst. Proc. Natl Acad. Sci. USA 92, 4962–4966 (1995)
    Article CAS ADS Google Scholar
  23. Garczarek, F., Wang, J., El-Sayed, M. A. & Gerwert, K. The assignment of the different infrared continuum absorbance changes observed in the 3000–1800 cm-1 region during the bacteriorhodopsin photocycle. Biophys. J. 87, 2676–2682 (2004)
    Article CAS ADS Google Scholar
  24. Hayashi, S., Tajkhorshid, E., Kandori, H. & Schulten, K. Role of hydrogen-bond network in energy storage of bacteriorhodopsin's light-driven proton pump revealed by ab initio normal-mode analysis. J. Am. Chem. Soc. 126, 10516–10517 (2004)
    Article CAS Google Scholar
  25. Tanimoto, T., Furutani, Y. & Kandori, H. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch models. Biochemistry 42, 2300–2306 (2003)
    Article CAS Google Scholar
  26. Rozenberg, M., Loewenschuss, A. & Marcus, Y. An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys. Chem. Chem. Phys. 2, 2699–2702 (2000)
    Article CAS Google Scholar
  27. Rousseau, R., Kleinschmidt, V., Schmitt, U. W. & Marx, D. Unravelling water network protonation patterns in bacteriorhodopsin by theoretical IR spectroscopy. Angew. Chem. Int. Edn Engl. 43, 4804–4807 (2004)
    Article CAS Google Scholar
  28. Spassov, V. Z., Luecke, H., Gerwert, K. & Bashford, D. p_K_a calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin. J. Mol. Biol. 312, 203–219 (2001)
    Article CAS Google Scholar
  29. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 Å resolution. Science 286, 255–260 (1999)
    Article CAS Google Scholar
  30. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996)
    Article CAS Google Scholar

Download references