The Southern Ocean biogeochemical divide (original) (raw)

References

  1. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric _p_CO2 . Nature 308, 620–624 (1984)
    Article ADS Google Scholar
  2. Knox, F. & McElroy, M. B. Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 (1984)
    Article ADS CAS Google Scholar
  3. Siegenthaler, U. & Wenk, T. H. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984)
    Article ADS CAS Google Scholar
  4. Joos, F., Sarmiento, J. L. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349, 772–775 (1991)
    Article ADS CAS Google Scholar
  5. Sarmiento, J. L. & Orr, J. C. Three-dimensional ocean model simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr. 36, 1928–1950 (1991)
    Article ADS CAS Google Scholar
  6. Marinov, I. Controls on the Air-Sea Balance of Carbon Dioxide. PhD thesis, Princeton Univ. (2005)
    Google Scholar
  7. Caldeira, K. & Duffy, P. B. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science 287, 620–622 (2000)
    Article ADS CAS PubMed Google Scholar
  8. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004)
    Article ADS CAS PubMed Google Scholar
  9. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000)
    Article ADS CAS PubMed Google Scholar
  10. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Mid-latitude westerlies, atmospheric CO2 and climate change during the Ice Ages. Paleoceanography 21, PA2005, doi:10.1029/2005PA001154 (2006)
  11. Kohfeld, K. E., Le Quere, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial-interglacial CO2 cycles. Science 308, 74–78 (2005)
    Article ADS CAS PubMed Google Scholar
  12. Gordon, A. in Antarctic Oceanology I (ed. Reid, J. L.) Antarctic Res. Ser. Vol. 15, 169–203 (American Geophysical Union, Washington DC, 1971)
    Book Google Scholar
  13. Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep-sea Res. I 42, 477–500 (1995)
    Article Google Scholar
  14. Wyrtki, K. The thermohaline circulation in relation to the general circulation in the oceans. Deep-Sea Res. 8, 39–64 (1961)
    ADS Google Scholar
  15. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, New York, 1942)
    Google Scholar
  16. Schmitz, W. J. On the interbasin-scale thermohaline circulation. Rev. Geophys. 33, 151–173 (1995)
    Article ADS Google Scholar
  17. Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2 . J. Mar. Res. 63, 813–839, doi:10.1357/0022240054663231 (2005)
    Article CAS Google Scholar
  18. Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three dimensional model study. Glob. Biogeochem. Cycles 19, GB1021, doi:10.1029/2004GB002342 (2005)
  19. Toggweiler, J. R., Dixon, K. & Broecker, W. S. The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res. 96, 20467–20497 (1991)
    Article ADS CAS Google Scholar
  20. Toggweiler, J. R., Murnane, R., Carson, S., Gnanadesikan, A. & Sarmiento, J. L. Representation of the carbon cycle in box models and GCMs–Part 2. Organic pump. Glob. Biogeochem. Cycles 17, 1027, doi:10.1029/2001GB001841 (2003)
    ADS Google Scholar
  21. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14, 571–588 (1999)
    Article ADS Google Scholar
  22. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990)
    Article ADS Google Scholar
  23. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000)
    Article ADS CAS PubMed Google Scholar
  24. Najjar, R. & Orr, J. Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. <http://www.cgd.ucar.edu/ oce/OCMIP/design.pdf> (1998).
  25. Gnanadesikan, A., Slater, R. D., Gruber, N. & Sarmiento, J. L. Oceanic vertical exchange and new production: a comparison between models and observations. Deep Sea Res. II 49, 363–401 (2002)
    Article ADS Google Scholar
  26. Gnanadesikan, A., Slater, R. D. & Samuels, B. L. Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models. Geophys. Res. Lett. 30, 1967, doi:10.1029/2003GL018036 (2003)
    Article ADS Google Scholar
  27. Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000)
    Article ADS MathSciNet Google Scholar
  28. Sloyan, B. M. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001)
    Article ADS Google Scholar

Download references