Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing (original) (raw)

References

  1. Chien, K. R. & Karsenty, G. Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120, 533–544 (2005)
    Article CAS Google Scholar
  2. Geiger, H. & Van Zant, G. The aging of lympho-hematopoietic stem cells. Nature Immunol. 3, 329–333 (2002)
    Article CAS Google Scholar
  3. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005)
    Article CAS Google Scholar
  4. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005)
    Article CAS Google Scholar
  5. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a_–_Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003)
    Article CAS Google Scholar
  6. Maslov, A. Y., Barone, T. A., Plunkett, R. J. & Pruitt, S. C. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci. 24, 1726–1733 (2004)
    Article CAS Google Scholar
  7. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nature Med. 2, 1011–1016 (1996)
    Article CAS Google Scholar
  8. Chen, J., Astle, C. M. & Harrison, D. E. Genetic regulation of primitive hematopoietic stem cell senescence. Exp. Hematol. 28, 442–450 (2000)
    Article CAS Google Scholar
  9. de Haan, G., Nijhof, W. & Van Zant, G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550 (1997)
    CAS PubMed Google Scholar
  10. Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003)
    Article ADS CAS Google Scholar
  11. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005)
    Article ADS CAS Google Scholar
  12. Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996)
    Article CAS Google Scholar
  13. Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004)
    Article CAS Google Scholar
  14. Nielsen, G. P. et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest. 79, 1137–1143 (1999)
    CAS PubMed Google Scholar
  15. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004)
    Article CAS Google Scholar
  16. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997)
    Article CAS Google Scholar
  17. Sharpless, N. E., Ramsey, M. R., Balasubramanian, P., Castrillon, D. H. & DePinho, R. A. The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis. Oncogene 23, 379–385 (2004)
    Article CAS Google Scholar
  18. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005)
    Article ADS CAS Google Scholar
  19. Molofsky, A. V. et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005)
    Article CAS Google Scholar
  20. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003)
    Article ADS CAS Google Scholar
  21. Bruggeman, S. W. M. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in _Bmi1_-deficient mice. Genes Dev. 19, 1438–1443 (2005)
    Article CAS Google Scholar
  22. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999)
    Article CAS Google Scholar
  23. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002)
    Article Google Scholar
  24. Chiasson, B. J., Tropepe, V., Morshead, C. M. & Kooy, D. v. d. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471 (1999)
    Article CAS Google Scholar
  25. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999)
    Article CAS Google Scholar
  26. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002)
    Article ADS CAS Google Scholar
  27. Kruger, G. M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669 (2002)
    Article CAS Google Scholar
  28. Jacobs, J. J. L., Kieboom, K., Marino, S., DePinho, R. A. & Lohuizen, M. v. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999)
    Article ADS CAS Google Scholar
  29. Matheu, A. et al. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev. 18, 2736–2746 (2004)
    Article CAS Google Scholar
  30. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001)
    Article ADS CAS Google Scholar

Download references