A protein interaction network for pluripotency of embryonic stem cells (original) (raw)
Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78, 7634–7638 (1981) ArticleADSCASPubMedPubMed Central Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981) ArticleADSCASPubMed Google Scholar
Donovan, P. J. & Gearhart, J. The end of the beginning for pluripotent stem cells. Nature414, 92–97 (2001) ArticleADSCASPubMed Google Scholar
Prelle, K., Zink, N. & Wolf, E. Pluripotent stem cells—model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat. Histol. Embryol.31, 169–186 (2002) ArticlePubMed Google Scholar
Silva, J., Chambers, I., Pollard, S. & Smith, A. Nanog promotes transfer of pluripotency after cell fusion. Nature441, 997–1001 (2006) ArticleADSCASPubMed Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003) ArticleCASPubMed Google Scholar
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003) ArticleCASPubMed Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998) ArticleCASPubMed Google Scholar
de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl Acad. Sci. USA100, 7480–7485 (2003) ArticleADSCASPubMedPubMed Central Google Scholar
Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.. Nature440, 637–643 (2006) ArticleADSCASPubMed Google Scholar
Niakan, K. K. et al. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol. Genet. Metab.88, 261–271 (2006) ArticleCASPubMed Google Scholar
Sakaki-Yumoto, M. et al. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development133, 3005–3013 (2006) ArticleCASPubMed Google Scholar
Mackler, S. A., Homan, Y. X., Korutla, L., Conti, A. C. & Blendy, J. A. The mouse nac1 gene, encoding a cocaine-regulated Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger protein, is regulated by AP1. Neuroscience121, 355–361 (2003) ArticleCASPubMed Google Scholar
Mackler, S. A. et al. NAC-1 is a brain POZ/BTB protein that can prevent cocaine-induced sensitization in the rat. J. Neurosci.20, 6210–6217 (2000) ArticleCASPubMedPubMed Central Google Scholar
Law, D. J., Du, M., Law, G. L. & Merchant, J. L. ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression. Biochem. Biophys. Res. Commun.262, 113–120 (1999) ArticleCASPubMed Google Scholar
Thompson, J. R. & Gudas, L. J. Retinoic acid induces parietal endoderm but not primitive endoderm and visceral endoderm differentiation in F9 teratocarcinoma stem cells with a targeted deletion of the Rex-1 (Zfp-42) gene. Mol. Cell. Endocrinol.195, 119–133 (2002) ArticleCASPubMed Google Scholar
Batagelj, V. & Mrvar, A. Pajek—program for large network analysis. Connections21, 47–57 (1998) MATH Google Scholar
Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet.38, 431–440 (2006) ArticleCASPubMed Google Scholar
Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature406, 378–382 (2000) ArticleADSCASPubMed Google Scholar
Lauberth, S. M. & Rauchman, M. A conserved twelve amino acid motif in sall1 recruits nuRD. J. Biol. Chem.281, 23922–23931 (2006) ArticleCASPubMed Google Scholar
Korutla, L., Wang, P. J. & Mackler, S. A. The POZ/BTB protein NAC1 interacts with two different histone deacetylases in neuronal-like cultures. J. Neurochem.94, 786–793 (2005) ArticleCASPubMed Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet.24, 372–376 (2000) ArticleCASPubMed Google Scholar
Hatano, S. Y. et al. Pluripotential competence of cells associated with Nanog activity. Mech. Dev.122, 67–79 (2005) ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006) ArticleCASPubMed Google Scholar
Lee, J., Rhee, B. K., Bae, G. Y., Han, Y. M. & Kim, J. Stimulation of Oct-4 activity by Ewing’s sarcoma protein. Stem Cells23, 738–751 (2005) ArticleCASPubMed Google Scholar
Perez-Iratxeta, C. et al. Study of stem cell function using microarray experiments. FEBS Lett.579, 1795–1801 (2005) ArticleCASPubMed Google Scholar