Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004) ArticleCAS Google Scholar
van der Bliek, A. M. Functional diversity in the dynamin family. Trends Cell Biol.9, 96–102 (1999) ArticleCASPubMed Google Scholar
Niemann, H. H., Knetsch, M. L., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J.20, 5813–5821 (2001) ArticleCASPubMedPubMed Central Google Scholar
Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell79, 199–209 (1994) ArticleCASPubMed Google Scholar
Prakash, B., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature403, 567–571 (2000) ArticleADSCASPubMed Google Scholar
Gao, H., Sage, T. L. & Osteryoung, K. W. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc. Natl Acad. Sci. USA103, 6759–6764 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
McFadden, G. I. Endosymbiosis and evolution of the plant cell. Curr. Opin. Plant Biol.2, 513–519 (1999) ArticleCASPubMed Google Scholar
Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature347, 256–261 (1990) ArticleADSCASPubMed Google Scholar
Song, B. D. & Schmid, S. L. A molecular motor or a regulator? Dynamin’s in a class of its own. Biochemistry42, 1369–1376 (2003) ArticleCASPubMed Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995) ArticleADSCASPubMed Google Scholar
Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and γ-phosphate analogues. J. Biol. Chem.272, 28030–28035 (1997) ArticleCASPubMed Google Scholar
Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999) ArticleCASPubMed Google Scholar
Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem.271, 22310–22314 (1996) ArticleCASPubMed Google Scholar
Tuma, P. L. & Collins, C. A. Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem.269, 30842–30847 (1994) CASPubMed Google Scholar
Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J.15, 6241–6250 (1996) ArticleCASPubMedPubMed Central Google Scholar
Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol.147, 259–267 (2004) ArticleCASPubMed Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998) ArticleCASPubMed Google Scholar
Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol.169, 117–126 (2005) ArticleCASPubMedPubMed Central Google Scholar
Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol.3, 922–926 (2001) ArticleCASPubMed Google Scholar
Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nature Struct. Mol. Biol.11, 574–575 (2004) ArticleCAS Google Scholar
Klockow, B. et al. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J.21, 240–250 (2002) ArticleCASPubMedPubMed Central Google Scholar
Ghosh, A., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature440, 101–104 (2006) ArticleADSCASPubMed Google Scholar
Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell90, 121–129 (1997) ArticleCASPubMed Google Scholar
Santel, A. & Fuller, M. T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci.114, 867–874 (2001) CASPubMed Google Scholar
Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem.273, 20150–20155 (1998) ArticleCASPubMed Google Scholar
Stock, D., Perisic, O. & Löwe, J. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology. Prog. Biophys. Mol. Biol.88, 311–327 (2005) ArticleCASPubMed Google Scholar