Scratching the surface of skin development (original) (raw)
Stern, C. D. Neural induction: old problem, new findings, yet more questions. Development132, 2007–2021 (2005). CASPubMed Google Scholar
M'Boneko, V. & Merker, H. J. Development and morphology of the periderm of mouse embryos (days 9–12 of gestation). Acta Anat. (Basel) 133, 325–336 (1988). CASPubMed Google Scholar
Atit, R. et al. β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol.296, 164–176 (2006). CASPubMed Google Scholar
Hardy, M. H. The secret life of the hair follicle. Trends Genet.8, 55–61 (1992). CASPubMed Google Scholar
Olivera-Martinez, I., Thelu, J. & Dhouailly, D. Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int. J. Dev. Biol.48, 93–101 (2004). CASPubMed Google Scholar
Davidson, D. The mechanism of feather pattern development in the chick. II. Control of the sequence of pattern formation. J. Embryol. Exp. Morphol.74, 261–273 (1983). CASPubMed Google Scholar
Petiot, A. et al. A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development130, 5493–5501 (2003). CASPubMed Google Scholar
Jung, H. S. et al. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol.196, 11–23 (1998). CASPubMed Google Scholar
Noramly, S. & Morgan, B. A. BMPs mediate lateral inhibition at successive stages in feather tract development. Development125, 3775–3787 (1998). CASPubMed Google Scholar
Botchkarev, V. A. et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biol.1, 158–164 (1999). CASPubMed Google Scholar
Mou, C., Jackson, B., Schneider, P., Overbeek, P. A. & Headon, D. J. Generation of the primary hair follicle pattern. Proc. Natl Acad. Sci. USA103, 9075–9080 (2006). ADSCASPubMedPubMed Central Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). CASPubMed Google Scholar
DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126, 4557–4568 (1999). CASPubMed Google Scholar
Noramly, S., Freeman, A. & Morgan, B. A. β-catenin signaling can initiate feather bud development. Development126, 3509–3521 (1999). CASPubMed Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). CASPubMed Google Scholar
Oro, A. E. & Higgins, K. Hair cycle regulation of Hedgehog signal reception. Dev. Biol.255, 238–248 (2003). CASPubMed Google Scholar
Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell9, 855–861 (2005). CASPubMed Google Scholar
Reddy, S. et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev.107, 69–82 (2001). CASPubMed Google Scholar
Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001). CASPubMedPubMed Central Google Scholar
Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 maintains stem cells and represses cell fate determination in skin. Cell127, 171–183 (2006). CASPubMed Google Scholar
van Genderen, C. et al. Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev.8, 2691–2703 (1994). CASPubMed Google Scholar
Van Mater, D., Kolligs, F. T., Dlugosz, A. A. & Fearon, E. R. Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev.17, 1219–1224 (2003). CASPubMedPubMed Central Google Scholar
Lo Celso, C., Prowse, D. M. & Watt, F. M. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development131, 1787–1799 (2004). CASPubMed Google Scholar
Lowry, W. E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev.19, 1596–1611 (2005). CASPubMedPubMed Central Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). CASPubMed Google Scholar
Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell2, 643–653 (2002). CASPubMed Google Scholar
Jamora, C., DasGupta, R., Kocieniewski, P. & Fuchs, E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature422, 317–322 (2003). ADSCASPubMedPubMed Central Google Scholar
Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol.163, 609–623 (2003). CASPubMedPubMed Central Google Scholar
Andl, T. et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development131, 2257–2268 (2004). CASPubMed Google Scholar
Headon, D. J. et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature414, 913–916 (2001). ADSCASPubMed Google Scholar
Schmidt-Ullrich, R. et al. NF-κB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development133, 1045–1057 (2006). CASPubMed Google Scholar
Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet.2, e119 (2006). PubMedPubMed Central Google Scholar
Atit, R., Conlon, R. A. & Niswander, L. EGF signaling patterns the feather array by promoting the interbud fate. Dev. Cell4, 231–240 (2003). CASPubMed Google Scholar
Muller-Rover, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol.117, 3–15 (2001). CASPubMed Google Scholar
Kopan, R. et al. Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors. Dev. Biol.242, 44–57 (2002). CASPubMed Google Scholar
Legue, E. & Nicolas, J. F. Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development132, 4143–4154 (2005). CASPubMed Google Scholar
Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature437, 275–280 (2005). ADSCASPubMedPubMed Central Google Scholar
Langbein, L. & Schweizer, J. Keratins of the human hair follicle. Int. Rev. Cytol.243, 1–78 (2005). CASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet.21, 410–413 (1999). CASPubMed Google Scholar
Dai, X. & Segre, J. A. Transcriptional control of epidermal specification and differentiation. Curr. Opin. Genet. Dev.14, 485–491 (2004). CASPubMedPubMed Central Google Scholar
Ellis, T. et al. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes Dev.15, 2307–2319 (2001). CASPubMedPubMed Central Google Scholar
Kaufman, C. K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev.17, 2108–2122 (2003). CASPubMedPubMed Central Google Scholar
Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell126, 597–609 (2006). CASPubMedPubMed Central Google Scholar
Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biol.8, 623–630 (2006). CASPubMed Google Scholar
Chang, D. H., Angelin-Duclos, C. & Calame, K. BLIMP-1: trigger for differentiation of myeloid lineage. Nature Immunol.1, 169–176 (2000). CAS Google Scholar
De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature398, 518–522 (1999). ADSCASPubMed Google Scholar
Pan, Y. et al. γ-Secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev. Cell7, 731–743 (2004). CASPubMed Google Scholar
Blanpain, C., Lowry, W. E., Pasolli, H. A. & Fuchs, E. Canonical Notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev.20, 3022–3035 (2006). CASPubMedPubMed Central Google Scholar
Ming Kwan, K., Li, A. G., Wang, X. J., Wurst, W. & Behringer, R. R. Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis39, 10–25 (2004). PubMed Google Scholar
Schmidt-Ullrich, R. & Paus, R. Molecular principles of hair follicle induction and morphogenesis. BioEssays27, 247–261 (2005). CASPubMed Google Scholar
Tong, X. & Coulombe, P. A. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion. Genes Dev.20, 1353–1364 (2006). CASPubMedPubMed Central Google Scholar
Potter, G. B. et al. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev.15, 2687–2701 (2001). CASPubMedPubMed Central Google Scholar
Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature442, 312–316 (2006). ADSCASPubMed Google Scholar
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). CASPubMed Google Scholar
Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102, 451–461 (2000). CASPubMed Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). CASPubMed Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). CASPubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). ADSCASPubMed Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol.22, 411–417 (2004). CAS Google Scholar
Ohyama, M. et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J. Clin. Invest.116, 249–260 (2006). CASPubMedPubMed Central Google Scholar
Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA102, 14677–14682 (2005). ADSCASPubMedPubMed Central Google Scholar
Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol.11, 558–568 (2001). CASPubMed Google Scholar
Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J. & Roop, D. R. Deregulated expression of c-Myc depletes epidermal stem cells. Nature Genet.28, 165–168 (2001). CASPubMed Google Scholar
Zanet, J. et al. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J. Cell Sci.118, 1693–1704 (2005). CASPubMed Google Scholar
Benitah, S. A., Frye, M., Glogauer, M. & Watt, F. M. Stem cell depletion through epidermal deletion of Rac1. Science309, 933–935 (2005). ADSPubMed Google Scholar
Wu, X. et al. Cdc42 controls progenitor cell differentiation and β-catenin turnover in skin. Genes Dev.20, 571–585 (2006). CASPubMedPubMed Central Google Scholar
Niemann, C., Owens, D. M., Hulsken, J., Birchmeier, W. & Watt, F. M. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development129, 95–109 (2002). CASPubMed Google Scholar
Takeda, H. et al. Human sebaceous tumors harbor inactivating mutations in LEF1. Nature Med.12, 395–397 (2006). CASPubMed Google Scholar
Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J.20, 1215–1222 (2001). CASPubMedPubMed Central Google Scholar
Panteleyev, A. A., Paus, R. & Christiano, A. M. Patterns of hairless (hr) gene expression in mouse hair follicle morphogenesis and cycling. Am. J. Pathol.157, 1071–1079 (2000). CASPubMedPubMed Central Google Scholar
Fuchs, E. & Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell19, 1033–1042 (1980). CASPubMed Google Scholar
Coulombe, P. A. & Wong, P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nature Cell Biol.6, 699–706 (2004). CASPubMed Google Scholar
Kim, S., Wong, P. & Coulombe, P. A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature441, 362–365 (2006). ADSCASPubMed Google Scholar
Watt, F. M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J.21, 3919–3926 (2002). CASPubMedPubMed Central Google Scholar
Wilhelmsen, K., Litjens, S. H. & Sonnenberg, A. Multiple functions of the integrin α6β4 in epidermal homeostasis and tumorigenesis. Mol. Cell Biol.26, 2877–2886 (2006). CASPubMedPubMed Central Google Scholar
Raghavan, S., Vaezi, A. & Fuchs, E. A role for αβ1 integrins in focal adhesion function and polarized cytoskeletal dynamics. Dev. Cell5, 415–427 (2003). CASPubMed Google Scholar
Brakebusch, C. & Fassler, R. β 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev.24, 403–411 (2005). CASPubMed Google Scholar
Perez-Moreno, M. & Fuchs, E. Catenins: keeping cells from getting their signals crossed. Dev. Cell11, 601–612 (2006). CASPubMedPubMed Central Google Scholar
van Roy, F. M. & McCrea, P. D. A role for Kaiso-p120ctn complexes in cancer? Nature Rev. Cancer5, 956–964 (2005). CAS Google Scholar
Kobielak, A. & Fuchs, E. Links between α-catenin, NF-κB, and squamous cell carcinoma in skin. Proc. Natl Acad. Sci. USA103, 2322–2327 (2006). ADSCASPubMedPubMed Central Google Scholar
Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature437, 369–375 (2005). ADSCASPubMed Google Scholar
Zhang, J. Y., Green, C. L., Tao, S. & Khavari, P. A. NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev.18, 17–22 (2004). PubMedPubMed Central Google Scholar
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell104, 605–617 (2001). CASPubMed Google Scholar
Zhang, W. et al. E-cadherin loss promotes the initiation of squamous cell carcinoma invasion through modulation of integrin-mediated adhesion. J. Cell Sci.119, 283–291 (2006). CASPubMed Google Scholar
Kolodka, T. M., Garlick, J. A. & Taichman, L. B. Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc. Natl Acad. Sci. USA95, 4356–4361 (1998). ADSCASPubMedPubMed Central Google Scholar
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med.11, 1351–1354 (2005). CASPubMed Google Scholar
Mackenzie, I. C. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature226, 653–655 (1970). ADSCASPubMed Google Scholar
Potten, C. S. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int. Rev. Cytol.69, 271–318 (1981). CASPubMed Google Scholar
Smart, I. H. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. Br. J. Dermatol.82, 276–282 (1970). CASPubMed Google Scholar
Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature398, 708–713 (1999). ADSCASPubMed Google Scholar
Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature398, 714–718 (1999). ADSCASPubMed Google Scholar
Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature410, 710–714 (2001). ADSCASPubMed Google Scholar
Green, H. Cultured cells for the treatment of disease. Sci. Am.265, 96–102 (1991). ADSCASPubMed Google Scholar
Li, J., Greco, V., Guasch, G., Fuchs, E. & Mombaerts, P. Mice cloned from adult skin cells. Proc. Natl Acad. Sci. USA (in the press).
Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med.341, 491–497 (1999). CASPubMed Google Scholar