Melanoma biology and new targeted therapy (original) (raw)
Slominski, A., Tobin, D. J., Shibahara, S. & Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev.84, 1155–1228 (2004). ArticleCASPubMed Google Scholar
Boissy, R. E. & Nordlund, J. J. Molecular basis of congenital hypopigmentary disorders in humans: a review. Pigment Cell Res.10, 12–24 (1997). ArticleCASPubMed Google Scholar
Cummins, D. L. et al. Cutaneous malignant melanoma. Mayo Clin. Proc.81, 500–507 (2006). ArticlePubMed Google Scholar
Haass, N. K., Smalley, K. S. & Herlyn, M. The role of altered cell–cell communication in melanoma progression. J. Mol. Histol.35, 309–318 (2004). ArticleCASPubMed Google Scholar
Clark, W. H. et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol.15, 1147–1165 (1984). ArticlePubMed Google Scholar
Kuchelmeister, C., Schaumburg-Lever, G. & Garbe, C. Acral cutaneous melanoma in caucasians: clinical features, histopathology and prognosis in 112 patients. Br. J. Dermatol.143, 275–280 (2000). ArticleCASPubMed Google Scholar
Ishihara, K., Saida, T. & Yamamoto, A. Updated statistical data for malignant melanoma in Japan. Int. J. Clin. Oncol.6, 109–116 (2001). ArticleCASPubMed Google Scholar
Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med.340, 1341–1348 (1999). ArticleCASPubMed Google Scholar
Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med.353, 2135–2147 (2005). ArticleCASPubMed Google Scholar
Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol.5, 875–885 (2004). ArticleCAS Google Scholar
Bohm, M. et al. Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ.6, 291–302 (1995). CASPubMed Google Scholar
Wellbrock, C., Weisser, C., Geissinger, E., Troppmair, J. & Schartl, M. Activation of p59Fyn leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J. Biol. Chem.277, 6443–6454 (2002). ArticleCASPubMed Google Scholar
Cohen, C. et al. Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin. Cancer Res.8, 3728–3733 (2002). CASPubMed Google Scholar
Satyamoorthy, K. et al. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res.63, 756–759 (2003). CASPubMed Google Scholar
Willmore-Payne, C., Holden, J. A., Tripp, S. & Layfield, L. J. Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum. Pathol.36, 486–493 (2005). ArticleCASPubMed Google Scholar
Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res.65, 4005–4011 (2005). ArticleCASPubMed Google Scholar
Gray-Schopfer, V. C., da Rocha Dias, S. & Marais, R. The role of B-RAF in melanoma. Cancer Metastasis Rev.24, 165–183 (2005). ArticleCASPubMed Google Scholar
Sharma, A. et al. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res.65, 2412–2421 (2005). ArticleCASPubMed Google Scholar
Wellbrock, C. & Marais, R. Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J. Cell Biol.170, 703–708 (2005). ArticleCASPubMedPubMed Central Google Scholar
Goodall, J. et al. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell Biol.24, 2923–2931 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bhatt, K. V. et al. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF–MEK–ERK signaling. Oncogene24, 3459–3471 (2005). ArticleCASPubMed Google Scholar
Gray-Schopfer, V. C. et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer95, 496–505 (2006). ArticleCASPubMedPubMed Central Google Scholar
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436, 720–724 (2005). ArticleADSCASPubMed Google Scholar
Huntington, J. T. et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J. Biol. Chem.279, 33168–33176 (2004). ArticleCASPubMed Google Scholar
Ellerhorst, J. A. et al. Regulation of iNOS by the p44/42 mitogen-activated protein kinase pathway in human melanoma. Oncogene25, 3956–3962 (2006). ArticleCASPubMed Google Scholar
Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature441, 424–430 (2006). ArticleADSCASPubMed Google Scholar
Omholt, K., Krockel, D., Ringborg, U. & Hansson, J. Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res.16, 197–200 (2006). ArticleCASPubMed Google Scholar
Wu, H., Goel, V. & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene22, 3113–3122 (2003). ArticleCASPubMed Google Scholar
Stahl, J. M. et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res.64, 7002–7010 (2004). ArticleCASPubMed Google Scholar
Smalley, K. S. et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther.5, 1136–1144 (2006). ArticleADSCASPubMed Google Scholar
Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F. G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol.122, 337–341 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wellbrock, C. et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res.64, 2338–2342 (2004). ArticleCASPubMed Google Scholar
Levy, C., Khaled, M. & Fisher, D. E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med.12, 406–414 (2006). ArticleCASPubMed Google Scholar
Selzer, E. et al. The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res.62, 2098–2103 (2002). CASPubMed Google Scholar
Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436, 117–122 (2005). ArticleADSCASPubMed Google Scholar
Wu, M. et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev.14, 301–312 (2000). ArticleCASPubMedPubMed Central Google Scholar
Takeda, K. et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem.275, 14013–14016 (2000). ArticleCASPubMed Google Scholar
Omholt, K., Platz, A., Ringborg, U. & Hansson, J. Cytoplasmic and nuclear accumulation of β-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int. J. Cancer92, 839–842 (2001). ArticleCASPubMed Google Scholar
Rimm, D. L., Caca, K., Hu, G., Harrison, F. B. & Fearon, E. R. Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am. J. Pathol.154, 325–329 (1999). ArticleCASPubMedPubMed Central Google Scholar
Worm, J., Christensen, C., Gronbaek, K., Tulchinsky, E. & Guldberg, P. Genetic and epigenetic alterations of the APC gene in malignant melanoma. Oncogene23, 5215–5226 (2004). ArticleCASPubMed Google Scholar
Chen, D. et al. SKI activates Wnt/β-catenin signaling in human melanoma. Cancer Res.63, 6626–6634 (2003). CASPubMed Google Scholar
Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409, 207–211 (2001). ArticleADSCASPubMed Google Scholar
Bennett, D. C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22, 3063–3069 (2003). ArticleCASPubMed Google Scholar
Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). ArticleADSCASPubMed Google Scholar
Polsky, D., Young, A. Z., Busam, K. J. & Alani, R. M. The transcriptional repressor of p16/Ink4a, Id1, is up-regulated in early melanomas. Cancer Res.61, 6008–6011 (2001). CASPubMed Google Scholar
Sauter, E. R. et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res.62, 3200–3206 (2002). CASPubMed Google Scholar
Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet.33, 19–20 (2003). ArticleCASPubMed Google Scholar
Papp, T. et al. Mutational analysis of N-ras, p53, CDKN2A (p16INK4a), _p14_ARF, CDK4, and MC1R genes in human dysplastic melanocytic naevi. J. Med. Genet.40, E14 (2003). ArticleCASPubMedPubMed Central Google Scholar
Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell113, 703–716 (2003). ArticleCASPubMed Google Scholar
Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene22, 3138–3151 (2003). ArticleCASPubMed Google Scholar
Tarhini, A. A. & Agarwala, S. S. Cutaneous melanoma: available therapy for metastatic disease. Dermatol. Ther.19, 19–25 (2006). ArticlePubMed Google Scholar
Kirkwood, J. M., Moschos, S. & Wang, W. Strategies for the development of more effective adjuvant therapy of melanoma: current and future explorations of antibodies, cytokines, vaccines, and combinations. Clin. Cancer Res.12, 2331s–2336s (2006). ArticleCASPubMed Google Scholar
Smalley, K. S. & Eisen, T. G. Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. Int. J. Cancer105, 165–175 (2003). ArticleCASPubMed Google Scholar
Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64, 7099–7109 (2004). ArticleCASPubMed Google Scholar
Flaherty, K. T. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin. Cancer Res.12, 2366s–2370s (2006). ArticleCASPubMed Google Scholar
Eisen, T. et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer95, 581–586 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gray-Schopfer, V., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res.67, 122–129 (2007). ArticleCASPubMed Google Scholar
Adnane, L., Trail, P. A., Taylor, I. & Wilhelm, S. M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol.407, 597–612 (2005). ArticleCAS Google Scholar
Garnett, M. J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell20, 963–969 (2005). ArticleCASPubMed Google Scholar
Dumaz, N. et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res.66, 9483–9491 (2006). ArticleCASPubMed Google Scholar
Collisson, E. A., De, A., Suzuki, H., Gambhir, S. S. & Kolodney, M. S. Treatment of metastatic melanoma with an orally available inhibitor of the Ras–Raf–MAPK cascade. Cancer Res.63, 5669–5673 (2003). CASPubMed Google Scholar
Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature439, 358–362 (2006). ADSCASPubMed Google Scholar
Koo, H. M. et al. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl Acad. Sci. USA99, 3052–3057 (2002). ArticleADSCASPubMedPubMed Central Google Scholar
Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol.24, 9658–9667 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dancey, J. E. Therapeutic targets: MTOR and related pathways. Cancer Biol. Ther.5, 1065–1073 (2006). ArticleCASPubMed Google Scholar
Bush, J. A. & Li, G. The role of Bcl-2 family members in the progression of cutaneous melanoma. Clin. Exp. Metastasis20, 531–539 (2003). ArticleCASPubMed Google Scholar
Nishimura, E. K., Granter, S. R. & Fisher, D. E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science307, 720–724 (2005). ArticleADSCASPubMed Google Scholar
Jansen, B. et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med.4, 232–234 (1998). ArticleCASPubMed Google Scholar
Bedikian, A. Y. et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol.24, 4738–4745 (2006). ArticleCASPubMed Google Scholar
Del Bufalo, D., Trisciuoglio, D., Scarsella, M., Zangemeister-Wittke, U. & Zupi, G. Treatment of melanoma cells with a bcl-2/bcl-xL antisense oligonucleotide induces antiangiogenic activity. Oncogene22, 8441–8447 (2003). ArticleCASPubMed Google Scholar
Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther.3, 1427–1438 (2004). CASPubMed Google Scholar
Sharp, S. & Workman, P. Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res.95, 323–348 (2006). ArticleCASPubMed Google Scholar
da Rocha Dias, S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res.65, 10686–10691 (2005). ArticleCASPubMed Google Scholar
Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA103, 57–62 (2006). ArticleADSCASPubMed Google Scholar
Amiri, K. I., Horton, L. W., LaFleur, B. J., Sosman, J. A. & Richmond, A. Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res.64, 4912–4918 (2004). ArticleCASPubMed Google Scholar
Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κ B-dependent transcription in mice. J. Biol. Chem.278, 1450–1456 (2003). ArticleCASPubMed Google Scholar
Rofstad, E. K. & Halsor, E. F. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res.60, 4932–4938 (2000). CASPubMed Google Scholar
Tucker, G. C. Integrins: molecular targets in cancer therapy. Curr. Oncol. Rep.8, 96–103 (2006). ArticleCASPubMed Google Scholar
Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin ανβ3 . Clin. Cancer Res.6, 3056–3061 (2000). CASPubMed Google Scholar
Gupta, P. B., Mani, S., Yang, J., Hartwell, K. & Weinberg, R. A. The evolving portrait of cancer metastasis. Cold Spring Harb. Symp. Quant. Biol.70, 291–297 (2005). ArticleCASPubMed Google Scholar
Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell125, 1269–1281 (2006). ArticleCASPubMed Google Scholar
Straume, O. & Akslen, L. A. Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int. J. Cancer74, 535–539 (1997). ArticleCASPubMed Google Scholar
Lee, P. et al. ARRY-142886, a potent and selective MEK inhibitor: III) Efficacy in murine xenograft models correlates with decreased ERK phosphorylation. Proc. Am. Assoc. Cancer Res.45, 897 (2004). Google Scholar
Lyssikatos, J. et al. ARRY-142886, a potent and selective MEK inhibitor: I) ATP-independent inhibition results in high enzymatic and cellular selectivity. Proc. Am. Assoc. Cancer Res.45, 896-b (2004). Google Scholar
Yeh, T., Wallace, E., Lyssikatos, J. & Winkler, J. ARRY-142886, a potent and selective MEK inhibitor: II) Potency against cellular MEK leads to inhibition of cellular proliferation and induction of apoptosis in cell lines with mutant Ras or B-Raf. Proc. Am. Assoc. Cancer Res.45, 896-c–897-c (2004). Google Scholar
Morabito, A., De Maio, E., Di Maio, M., Normanno, N. & Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist11, 753–764 (2006). ArticleCASPubMed Google Scholar
Peterson, A. C. et al. Phase II study of the Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin. Cancer Res.10, 4048–4054 (2004). ArticleCASPubMed Google Scholar
Margolin, K. et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer104, 1045–1048 (2005). ArticleCASPubMed Google Scholar
O'Donnell, A. et al. A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints in patients with solid tumors. Proc. Am. Soc. Clin. Oncol.22, Abstr. 806 (2003).
End, D. W. et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res.61, 131–137 (2001). CASPubMed Google Scholar
Markovic, S. N. et al. A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer103, 2584–2589 (2005). ArticleCASPubMed Google Scholar
Yang, J., Amiri, K. I., Burke, J. R., Schmid, J. A. & Richmond, A. BMS-345541 targets inhibitor of κB kinase and induces apoptosis in melanoma: involvement of nuclear factor κB and mitochondria pathways. Clin. Cancer Res.12, 950–960 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yaguchi, S. et al. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl Cancer Inst.98, 545–556 (2006). ArticleCASPubMed Google Scholar