Cavity QED with a Bose–Einstein condensate (original) (raw)

References

  1. van Enk, S. J., Kimble, H. J. & Mabuchi, H. Quantum information processing in cavity-QED. Quantum Inform. Process. 3, 75–90 (2004)
    Article Google Scholar
  2. Raimond, J. M., Brune, M. & Haroche, S. Colloquium: manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)
    Article ADS MathSciNet Google Scholar
  3. Walther, H. Quantum phenomena of single atoms. Adv. Chem. Phys. 122, 167–197 (2002)
    CAS Google Scholar
  4. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. T76, 127–137 (1998)
    Article CAS ADS Google Scholar
  5. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002)
    Article CAS ADS Google Scholar
  6. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006)
    Article CAS ADS Google Scholar
  7. Nußmann, S. et al. Vacuum-stimulated cooling of single atoms in three dimensions. Nature Phys. 1, 122–125 (2005)
    Article ADS Google Scholar
  8. Sauer, J. A., Fortier, K. M., Chang, M. S., Hamley, C. D. & Chapman, M. S. Cavity QED with optically transported atoms. Phys. Rev. A. 69, 051804 (2004)
    Article ADS Google Scholar
  9. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)
    Article CAS ADS Google Scholar
  10. Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788–3791 (1995)
    Article CAS ADS Google Scholar
  11. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)
    Article CAS ADS Google Scholar
  12. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)
    Article CAS ADS Google Scholar
  13. Horak, P., Barnett, S. M. & Ritsch, H. Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities. Phys. Rev. A. 61, 033609 (2000)
    Article ADS Google Scholar
  14. Lewenstein, M. et al. Travelling to exotic places with ultracold atoms. In Atomic Physics 20 Vol. 869 of XX International Conference on Atomic Physics (ICAP) 2006 201–211 (American Institute of Physics, New York, 2006)
    Google Scholar
  15. Jaynes, E. & Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)
    Article Google Scholar
  16. Tavis, M. & Cummings, F. W. Exact solution for an n-molecule radiation-field hamiltonian. Phys. Rev. 170, 379–384 (1968)
    Article ADS Google Scholar
  17. Leslie, S., Shenvi, N., Brown, K. R., Stamper Kurn, D. M. & Whaley, K. B. Transmission spectrum of an optical cavity containing N atoms. Phys. Rev. A 69, 043805 (2004)
    Article ADS Google Scholar
  18. Raizen, M. G., Thompson, R. J., Brecha, R. J., Kimble, H. J. & Carmichael, H. J. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev. Lett. 63, 240–243 (1989)
    Article CAS ADS Google Scholar
  19. Tuchman, A. K. et al. Normal-mode splitting with large collective cooperativity. Phys. Rev. A. 74, 053821 (2006)
    Article ADS Google Scholar
  20. Colombe, Y. et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Preprint at 〈http://arxiv.org/abs/0706.1390〉 (2007)
  21. Mekhov, I. B., Maschler, C. & Ritsch, H. Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics. Nature Phys. 3, 319–323 (2007)
    Article CAS ADS Google Scholar
  22. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005)
    Article ADS Google Scholar
  23. Slama, S., Bux, S., Krenz, G., Zimmermann, C. & Courteille, P. W. Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007)
    Article CAS ADS Google Scholar
  24. Murch, K. W., Moore, K. L., Gupta, S. & Stamper Kurn, D. M. Measurement of intracavity quantum fluctuations of light using an atomic fluctuation bolometer. Preprint at 〈http://arxiv.org/abs/0706.1005〉 (2007)
  25. Gupta, S., Moore, K. L., Murch, K. W. & Stamper Kurn, D. M. Cavity nonlinear optics at low photon numbers from collective atomic motion. Preprint at 〈http://arxiv.org/abs/0706.1052〉 (2007)
  26. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases. Rev. Sci. Instrum. 77, 063118 (2006)
    Article ADS Google Scholar
  27. Kuhr, S. et al. Deterministic delivery of a single atom. Science 293, 278–280 (2001)
    Article CAS ADS Google Scholar
  28. Meiser, D. & Meystre, P. Superstrong coupling regime of cavity quantum electrodynamics. Phys. Rev. A. 74, 065801 (2006)
    Article ADS Google Scholar
  29. Moore, M. G., Zobay, O. & Meystre, P. Quantum optics of a Bose-Einstein condensate coupled to a quantized light field. Phys. Rev. A. 60, 1491–1506 (1999)
    Article CAS ADS Google Scholar
  30. Daley, A. J., Fedichev, P. O. & Zoller, P. Single-atom cooling by superfluid immersion: a nondestructive method for qubits. Phys. Rev. A. 69, 022306 (2004)
    Article ADS Google Scholar

Download references