Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH (original) (raw)

References

  1. Krishtal, O. The ASICs: Signaling molecules? Modulators? Trends Neurosci. 26, 477–483 (2003)
    Article CAS Google Scholar
  2. Lingueglia, E. Acid sensing ion channels in sensory perception. J. Biol. Chem. 282, 17325–17329 (2007)
    Article CAS Google Scholar
  3. Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002)
    Article CAS Google Scholar
  4. Krishtal, O. A. & Pidoplichko, V. I. A receptor for protons in the nerve cell membrane. Neuroscience 5, 2325–2327 (1980)
    Article CAS Google Scholar
  5. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997)
    Article ADS CAS Google Scholar
  6. O’Hagan, R. & Chalfie, M. Mechanosensation in Caenorhabditis elegans. Int. Rev. Neurobiol. 69, 169–203 (2006)
    Article Google Scholar
  7. Lingueglia, E., Deval, E. & Lazdunski, M. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRF-amide and related peptides. Peptides 27, 1138–1152 (2006)
    Article CAS Google Scholar
  8. Chen, C. C., England, S., Akopian, A. N. & Wood, J. N. A sensory neuron-specific, proton-gated ion channel. Proc. Natl Acad. Sci. USA 95, 10240–10245 (1998)
    Article ADS CAS Google Scholar
  9. Price, M. P., Snyder, P. M. & Welsh, M. J. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 271, 7879–7882 (1996)
    Article CAS Google Scholar
  10. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997)
    Article CAS Google Scholar
  11. Waldmann, R. et al. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272, 20975–20978 (1997)
    Article CAS Google Scholar
  12. Grunder, S., Geisler, H. S., Bassler, E. L. & Ruppersberg, J. P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11, 1607–1611 (2000)
    Article CAS Google Scholar
  13. Alvarez de la Rosa, D., Zhang, P., Shao, D., White, F. & Canessa, C. M. Functional implications of the localization and activity of acid-sensing channels in rat peripheral nervous system. Proc. Natl Acad. Sci. USA 99, 2326–2331 (2002)
    Article ADS CAS Google Scholar
  14. Alvarez de la Rosa, D. et al. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. (Lond.) 546, 77–87 (2003)
    Article CAS Google Scholar
  15. Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001)
    Article CAS Google Scholar
  16. Bassilana, F. et al. The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties. J. Biol. Chem. 272, 28819–28822 (1997)
    Article CAS Google Scholar
  17. Benson, C. J. et al. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc. Natl Acad. Sci. USA 99, 2338–2343 (2002)
    Article ADS CAS Google Scholar
  18. Wemmie, J. A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning and memory. Neuron 34, 463–477 (2002)
    Article CAS Google Scholar
  19. Sutherland, S. P., Benson, C. J., Adelman, J. & McCleskey, E. W. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl Acad. Sci. USA 98, 711–716 (2001)
    Article ADS CAS Google Scholar
  20. Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004)
    Article CAS Google Scholar
  21. Hesselager, M., Timmermann, D. B. & Ahring, P. K. pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J. Biol. Chem. 279, 11006–11015 (2004)
    Article CAS Google Scholar
  22. Korkushco, A. O., Krishtal, O. A. & Nowycky, M. C. Steady-state characteristics of the proton receptor in the somatic membrane of rat sensory neurons. Neurofiziologiya 15, 632–638 (1983)
    Google Scholar
  23. Immke, D. C. & McCleskey, E. W. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ block. Neuron 37, 75–84 (2003)
    Article CAS Google Scholar
  24. Zhang, P., Sigworth, F. J. & Canessa, C. M. Gating of acid-sensitive ion channel-1: Release of Ca2+ block vs allosteric mechanism. J. Gen. Physiol. 127, 109–117 (2006)
    Article CAS Google Scholar
  25. Baron, A., Waldmann, R. & Lazdunski, M. ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol. (Lond.) 539, 485–494 (2002)
    Article CAS Google Scholar
  26. Askwith, C. C., Wemmie, J. A., Price, M. P., Rokhlina, T. & Welsh, M. J. Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279, 18296–18305 (2004)
    Article CAS Google Scholar
  27. Coscoy, S., Lingueglia, E., Lazdunski, M. & Barbry, P. The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer. J. Biol. Chem. 273, 8317–8322 (1998)
    Article CAS Google Scholar
  28. Snyder, P. M., Cheng, C., Prince, L. S., Rogers, J. C. & Welsh, M. J. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J. Biol. Chem. 273, 681–684 (1998)
    Article CAS Google Scholar
  29. Coric, T., Zheng, D., Gerstein, M. & Canessa, C. M. Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. J. Physiol. (Lond.) 568, 725–735 (2005)
    Article CAS Google Scholar
  30. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006)
    Article CAS Google Scholar
  31. Staruschenko, A., Adams, E., Booth, R. E. & Stockand, J. D. Epithelial Na+ channel subunit stoichiometry. Biophys. J. 88, 3966–3975 (2005)
    Article CAS Google Scholar
  32. Firsov, D., Gautschi, I., Merillat, A.-M., Rossier, B. C. & Schild, L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 17, 344–352 (1998)
    Article CAS Google Scholar
  33. Eskandari, S. et al. Number of subunits comprising the epithelial sodium channel. J. Biol. Chem. 274, 27281–27286 (1999)
    Article CAS Google Scholar
  34. Unwin, N. Refined structure of the nicotinic acetylcholine receptor. J. Mol. Biol. 346, 967–989 (2005)
    Article CAS Google Scholar
  35. Cushman, K. A., Marsh-Haffner, J., Adelman, J. & McCleskey, E. W. A conformational change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3. J. Gen. Physiol. 129, 345–350 (2007)
    Article CAS Google Scholar
  36. Coric, T., Zhang, P., Todorovic, N. & Canessa, C. M. The extracellular domain determines the kinetics of desensitization in acid-sensitive ion channel 1. J. Biol. Chem. 278, 45240–45247 (2003)
    Article CAS Google Scholar
  37. Baron, A., Schaefer, L., Lingueglia, E., Champigny, G. & Lazdunski, M. Zn2+ and H+ are coactivators of acid-sensing ion channels. J. Biol. Chem. 276, 35361–35367 (2001)
    Article CAS Google Scholar
  38. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998)
    Article ADS CAS Google Scholar
  39. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232–235 (1991)
    Article ADS CAS Google Scholar
  40. Reynolds, J. A. & Karlin, A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17, 2035–2038 (1978)
    Article CAS Google Scholar
  41. Paukert, M., Babini, E., Pusch, M. & Grunder, S. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: Implications for channel gating. J. Gen. Physiol. 124, 383–394 (2004)
    Article CAS Google Scholar
  42. Kellenberger, S., Auberson, M., Gautschi, I., Schneeberger, E. & Schild, L. Permeability properties of ENaC selectivity filter mutants. J. Gen. Physiol. 118, 679–692 (2001)
    Article CAS Google Scholar
  43. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)
    Article ADS CAS Google Scholar
  44. Pfister, Y. et al. A gating mutation in the internal pore of ASIC1a. J. Biol. Chem. 281, 11787–11791 (2006)
    Article CAS Google Scholar
  45. Goodman, M. B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002)
    Article ADS CAS Google Scholar
  46. Sawyer, L. & James, M. N. Carboxyl-carboxylate interactions in proteins. Nature 295, 79–80 (1982)
    Article ADS CAS Google Scholar
  47. Todorovic, N., Coric, T., Zhang, P. & Canessa, C. M. Effects of extracellular calcium on fASIC1 currents. Ann. NY Acad. Sci. 1048, 331–336 (2005)
    Article ADS CAS Google Scholar
  48. Bellizzi, J. J., Widom, J., Kemp, C. W. & Clardy, J. Producing selenomethionine-labeled proteins with a baculovirus expression vector system. Structure 7, R263–R267 (1999)
    Article CAS Google Scholar
  49. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)
    Article CAS Google Scholar
  50. Cowtan, K. & Zhang, K. Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999)
    Article CAS Google Scholar
  51. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)
    Article CAS Google Scholar
  52. Jones, T. A., Zou, J.-Y. & Cowan, S. W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  53. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS Google Scholar

Download references