Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem.71, 101–132 (2002) ArticleCAS Google Scholar
Oettinger, M. A. How to keep V(D)J recombination under control. Immunol. Rev.200, 165–181 (2004) ArticleCAS Google Scholar
Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J.20, 6394–6403 (2001) ArticleCAS Google Scholar
Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K. L. Changes in histone acetylation are associated with differences in accessibility of VH gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol.23, 2438–2450 (2003) ArticleCAS Google Scholar
Morshead, K. B., Ciccone, D. N., Taverna, S. D., Allis, C. D. & Oettinger, M. A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl Acad. Sci. USA100, 11577–11582 (2003) ArticleCASADS Google Scholar
Callebaut, I. & Mornon, J. P. The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis. Cell. Mol. Life Sci.54, 880–891 (1998) ArticleCAS Google Scholar
Elkin, S. K. et al. A PHD finger motif in the C terminus of RAG2 modulates recombination activity. J. Biol. Chem.280, 28701–28710 (2005) ArticleCAS Google Scholar
Ragvin, A. et al. Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J. Mol. Biol.337, 773–788 (2004) ArticleCAS Google Scholar
Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature442, 96–99 (2006) ArticleCASADS Google Scholar
Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature442, 86–90 (2006) ArticleCASADS Google Scholar
West, K. L. et al. A direct interaction between the RAG2 C terminus and the core histones is required for efficient V(D)J recombination. Immunity23, 203–212 (2005) ArticleCAS Google Scholar
Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature442, 91–95 (2006) ArticleCASADS Google Scholar
Pena, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature442, 100–103 (2006) ArticleCASADS Google Scholar
Taverna, S. D. et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell24, 785–796 (2006) ArticleCAS Google Scholar
Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell25, 15–30 (2007) ArticleCAS Google Scholar
Ramon-Maiques, S. et al. The PHD finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0709170104 (in the press)
Shi, X. et al. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J. Biol. Chem.282, 2450–2455 (2007) ArticleCAS Google Scholar
Gomez, C. A. et al. Mutations in conserved regions of the predicted RAG2 kelch repeats block initiation of V(D)J recombination and result in primary immunodeficiencies. Mol. Cell. Biol.20, 5653–5664 (2000) ArticleCAS Google Scholar
Villa, A. et al. Partial V(D)J recombination activity leads to Omenn syndrome. Cell93, 885–896 (1998) ArticleCAS Google Scholar
Baumann, M., Mamais, A., McBlane, F., Xiao, H. & Boyes, J. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. EMBO J.22, 5197–5207 (2003) ArticleCAS Google Scholar
Sims, R. J. & Reinberg, D. Histone H3 Lys 4 methylation: caught in a bind? Genes Dev.20, 2779–2786 (2006) ArticleCAS Google Scholar
Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell128, 1077–1088 (2007) ArticleCAS Google Scholar
Perkins, E. J., Kee, B. L. & Ramsden, D. A. Histone 3 lysine 4 methylation during the pre-B to immature B-cell transition. Nucleic Acids Res.32, 1942–1947 (2004) ArticleCAS Google Scholar
Akamatsu, Y. et al. Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc. Natl Acad. Sci. USA100, 1209–1214 (2003) ArticleCASADS Google Scholar
Corneo, B. et al. Rag mutations reveal robust alternative end joining. Nature449, 483–486 (2007) ArticleCASADS Google Scholar
Kirch, S. A., Rathbun, G. A. & Oettinger, M. A. Dual role of RAG2 in V(D)J recombination: catalysis and regulation of ordered Ig gene assembly. EMBO J.17, 4881–4886 (1998) ArticleCAS Google Scholar
Liang, H. E. et al. The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity17, 639–651 (2002) ArticleCAS Google Scholar
Shi, Y. & Whetstine, J. R. Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell25, 1–14 (2007) ArticleCAS Google Scholar
Tenney, K. & Shilatifard, A. A. COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatin. J. Cell. Biochem.95, 429–436 (2005) ArticleCAS Google Scholar
Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. & Desiderio, S. A plant homeodomain in Rag-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity4, 561–571 (2007) Article Google Scholar
Matthews, A. G., Elkin, S. K. & Oettinger, M. A. Ordered DNA release and target capture in RAG transposition. EMBO J.23, 1198–1206 (2004) ArticleCAS Google Scholar
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature389, 251–260 (1997) ArticleCASADS Google Scholar
Ottinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) Article Google Scholar
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr.63, 32–41 (2007) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar
Sheldrick, G. M. & Schneider, T. R. SHELXL: High-resolution refinement. Methods Enzymol.277, 319–343 (1997) ArticleCAS Google Scholar
Elkin, S. K., Matthews, A. G. & Oettinger, M. A. The C-terminal portion of RAG2 protects against transposition in vitro . EMBO J.22, 1931–1938 (2003) ArticleCAS Google Scholar
Dai, Y. et al. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc. Natl Acad. Sci. USA100, 2462–2467 (2003) ArticleCASADS Google Scholar
Gauss, G. H. & Lieber, M. R. Unequal signal and coding joint formation in human V(D)J recombination. Mol. Cell. Biol.13, 3900–3906 (1993) ArticleCAS Google Scholar
Schlissel, M. S., Corcoran, L. M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med.173, 711–720 (1991) ArticleCAS Google Scholar