Neurite arborization and mosaic spacing in the mouse retina require DSCAM (original) (raw)
References
Wassle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev.71, 447–480 (1991) ArticleCAS Google Scholar
Novelli, E., Resta, V. & Galli-Resta, L. Mechanisms controlling the formation of retinal mosaics. Prog. Brain Res.147, 141–153 (2005) Article Google Scholar
Galli-Resta, L. Local, possibly contact-mediated signalling restricted to homotypic neurons controls the regular spacing of cells within the cholinergic arrays in the developing rodent retina. Development127, 1509–1516 (2000) CAS Google Scholar
Yamakawa, K. et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum. Mol. Genet.7, 227–237 (1998) ArticleCAS Google Scholar
Agarwala, K. L., Nakamura, S., Tsutsumi, Y. & Yamakawa, K. Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. Brain Res. Mol. Brain Res.79, 118–126 (2000) ArticleCAS Google Scholar
Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell101, 671–684 (2000) ArticleCAS Google Scholar
Millard, S. S., Flanagan, J. J., Pappu, K. S., Wu, W. & Zipursky, S. L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature447, 720–724 (2007) ArticleCASADS Google Scholar
Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell118, 619–633 (2004) ArticleCAS Google Scholar
Zhan, X. L. et al. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron43, 673–686 (2004) ArticleCAS Google Scholar
Soba, P. et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron54, 403–416 (2007) ArticleCAS Google Scholar
Matthews, B. J. et al. Dendrite self-avoidance is controlled by Dscam. Cell129, 593–604 (2007) ArticleCAS Google Scholar
Hughes, M. E. et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron54, 417–427 (2007) ArticleCAS Google Scholar
Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci.18, 8936–8946 (1998) ArticleCAS Google Scholar
Kong, J. H., Fish, D. R., Rockhill, R. L. & Masland, R. H. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol.489, 293–310 (2005) Article Google Scholar
Rodieck, R. W. The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci.6, 95–111 (1991) ArticleCAS Google Scholar
Rockhill, R. L., Euler, T. & Masland, R. H. Spatial order within but not between types of retinal neurons. Proc. Natl Acad. Sci. USA97, 2303–2307 (2000) ArticleCASADS Google Scholar
Yimlamai, D., Konnikova, L., Moss, L. G. & Jay, D. G. The zebrafish Down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Dev. Biol.279, 44–57 (2005) ArticleCAS Google Scholar
Galli-Resta, L., Resta, G., Tan, S. S. & Reese, B. E. Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci.17, 7831–7838 (1997) ArticleCAS Google Scholar
Lin, B., Wang, S. W. & Masland, R. H. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron43, 475–485 (2004) ArticleCAS Google Scholar
Raven, M. A., Eglen, S. J., Ohab, J. J. & Reese, B. E. Determinants of the exclusion zone in dopaminergic amacrine cell mosaics. J. Comp. Neurol.461, 123–136 (2003) Article Google Scholar
Resta, V., Novelli, E., Di Virgilio, F. & Galli-Resta, L. Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development132, 2873–2882 (2005) ArticleCAS Google Scholar
Wojtowicz, W. M. et al. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell130, 1134–1145 (2007) ArticleCAS Google Scholar
Meijers, R. et al. Structural basis of Dscam isoform specificity. Nature449, 487–491 (2007) ArticleCASADS Google Scholar
Neves, G., Zucker, J., Daly, M. & Chess, A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature Genet.36, 240–246 (2004) ArticleCAS Google Scholar
Hattori, D. et al. Dscam diversity is essential for neuronal wiring and self-recognition. Nature449, 223–227 (2007) ArticleCASADS Google Scholar
Chen, B. E. et al. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila . Cell125, 607–620 (2006) ArticleCAS Google Scholar
Agarwala, K. L. et al. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochem. Biophys. Res. Commun.285, 760–772 (2001) ArticleCAS Google Scholar
Yamagata, M. & Sanes, J. R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature doi: 10.1038/nature06469 (this issue).
Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell110, 649–660 (2002) ArticleCAS Google Scholar