Neurite arborization and mosaic spacing in the mouse retina require DSCAM (original) (raw)

References

  1. Wassle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–480 (1991)
    Article CAS Google Scholar
  2. Novelli, E., Resta, V. & Galli-Resta, L. Mechanisms controlling the formation of retinal mosaics. Prog. Brain Res. 147, 141–153 (2005)
    Article Google Scholar
  3. Galli-Resta, L. Local, possibly contact-mediated signalling restricted to homotypic neurons controls the regular spacing of cells within the cholinergic arrays in the developing rodent retina. Development 127, 1509–1516 (2000)
    CAS Google Scholar
  4. Yamakawa, K. et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum. Mol. Genet. 7, 227–237 (1998)
    Article CAS Google Scholar
  5. Agarwala, K. L., Nakamura, S., Tsutsumi, Y. & Yamakawa, K. Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. Brain Res. Mol. Brain Res. 79, 118–126 (2000)
    Article CAS Google Scholar
  6. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000)
    Article CAS Google Scholar
  7. Millard, S. S., Flanagan, J. J., Pappu, K. S., Wu, W. & Zipursky, S. L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 447, 720–724 (2007)
    Article CAS ADS Google Scholar
  8. Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633 (2004)
    Article CAS Google Scholar
  9. Zhan, X. L. et al. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43, 673–686 (2004)
    Article CAS Google Scholar
  10. Soba, P. et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54, 403–416 (2007)
    Article CAS Google Scholar
  11. Matthews, B. J. et al. Dendrite self-avoidance is controlled by Dscam. Cell 129, 593–604 (2007)
    Article CAS Google Scholar
  12. Hughes, M. E. et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54, 417–427 (2007)
    Article CAS Google Scholar
  13. Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998)
    Article CAS Google Scholar
  14. Kong, J. H., Fish, D. R., Rockhill, R. L. & Masland, R. H. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol. 489, 293–310 (2005)
    Article Google Scholar
  15. Rodieck, R. W. The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 6, 95–111 (1991)
    Article CAS Google Scholar
  16. Rockhill, R. L., Euler, T. & Masland, R. H. Spatial order within but not between types of retinal neurons. Proc. Natl Acad. Sci. USA 97, 2303–2307 (2000)
    Article CAS ADS Google Scholar
  17. Yimlamai, D., Konnikova, L., Moss, L. G. & Jay, D. G. The zebrafish Down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Dev. Biol. 279, 44–57 (2005)
    Article CAS Google Scholar
  18. Galli-Resta, L., Resta, G., Tan, S. S. & Reese, B. E. Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17, 7831–7838 (1997)
    Article CAS Google Scholar
  19. Lin, B., Wang, S. W. & Masland, R. H. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43, 475–485 (2004)
    Article CAS Google Scholar
  20. Raven, M. A., Eglen, S. J., Ohab, J. J. & Reese, B. E. Determinants of the exclusion zone in dopaminergic amacrine cell mosaics. J. Comp. Neurol. 461, 123–136 (2003)
    Article Google Scholar
  21. Resta, V., Novelli, E., Di Virgilio, F. & Galli-Resta, L. Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development 132, 2873–2882 (2005)
    Article CAS Google Scholar
  22. Wojtowicz, W. M. et al. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130, 1134–1145 (2007)
    Article CAS Google Scholar
  23. Meijers, R. et al. Structural basis of Dscam isoform specificity. Nature 449, 487–491 (2007)
    Article CAS ADS Google Scholar
  24. Neves, G., Zucker, J., Daly, M. & Chess, A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature Genet. 36, 240–246 (2004)
    Article CAS Google Scholar
  25. Hattori, D. et al. Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449, 223–227 (2007)
    Article CAS ADS Google Scholar
  26. Chen, B. E. et al. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila . Cell 125, 607–620 (2006)
    Article CAS Google Scholar
  27. Agarwala, K. L. et al. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochem. Biophys. Res. Commun. 285, 760–772 (2001)
    Article CAS Google Scholar
  28. Yamagata, M. & Sanes, J. R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature doi: 10.1038/nature06469 (this issue).
  29. Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002)
    Article CAS Google Scholar

Download references