From endoplasmic-reticulum stress to the inflammatory response (original) (raw)
Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med.354, 610–621 (2006). CASPubMed Google Scholar
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature444, 860–867 (2006). ADSCAS Google Scholar
Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol.6, 508–519 (2006). CAS Google Scholar
Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev.13, 1211–1233 (1999). CASPubMed Google Scholar
Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol.8, 519–529 (2007). CAS Google Scholar
Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem.74, 739–789 (2005). PubMed Google Scholar
Mori, K., Ma, W., Gething, M. J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell74, 743–756 (1993). CASPubMed Google Scholar
Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell73, 1197–1206 (1993). CASPubMed Google Scholar
Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol.18, 7499–7509 (1998). CASPubMedPubMed Central Google Scholar
Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature397, 271–274 (1999). ADSCASPubMed Google Scholar
Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell10, 3787–3799 (1999). CASPubMedPubMed Central Google Scholar
Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol.2, 326–332 (2000). CASPubMed Google Scholar
Kohno, K. How transmembrane proteins sense endoplasmic reticulum stress. Antioxid. Redox Signal.9, 2295–2303 (2007). CASPubMed Google Scholar
Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell5, 897–904 (2000). CASPubMed Google Scholar
Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol.167, 27–33 (2004). CASPubMedPubMed Central Google Scholar
Yaman, I. et al. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell113, 519–531 (2003). CASPubMed Google Scholar
Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell11, 619–633 (2003). CASPubMed Google Scholar
Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell6, 1355–1364 (2000). CASPubMed Google Scholar
Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell13, 365–376 (2007). CASPubMed Google Scholar
Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell13, 351–364 (2007). CASPubMed Google Scholar
Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K. & Hayashi, H. TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death. Embo J.24, 1243–1255 (2005). CASPubMedPubMed Central Google Scholar
Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem.279, 45495–45502 (2004). CASPubMed Google Scholar
Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell129, 1337–1349 (2007). CASPubMed Google Scholar
Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. Genetic deletion of C/EBP homologous protein CHOP reduces oxidative stress, improves β cell function, and prevents diabetes. J. Clin. Invest. (in the press). This report describes how the ER-stress-induced pro-apoptotic factor CHOP is involved in oxidative stress and β-cell death.
Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci.25, 502–508 (2000). CASPubMed Google Scholar
Tu, B. P. & Weissman, J. S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol.164, 341–346 (2004). CASPubMedPubMed Central Google Scholar
Tu, B. P. & Weissman, J. S. The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell10, 983–994 (2002). CASPubMed Google Scholar
Cuozzo, J. W. & Kaiser, C. A. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol.1, 130–135 (1999). References 27 and 28 provide insights into how protein folding in the ER leads to the production of ROS. CASPubMed Google Scholar
Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol.23, 7198–7209 (2003). CASPubMedPubMed Central Google Scholar
Mathers, J. et al. Antioxidant and cytoprotective responses to redox stress. Biochem. Soc. Symp.71, 157–176 (2004). CAS Google Scholar
Zhang, D. D. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev.38, 769–789 (2006). CASPubMed Google Scholar
Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem.279, 20108–20117 (2004). CASPubMed Google Scholar
Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature453, 807–811 (2008). ADSCASPubMedPubMed Central Google Scholar
Pahl, H. L. & Baeuerle, P. A. Expression of influenza virus hemagglutinin activates transcription factor NF-κB. J. Virol.69, 1480–1484 (1995). CASPubMedPubMed Central Google Scholar
Meyer, M. et al. Hepatitis B virus transactivator MHBst: activation of NF-κB, selective inhibition by antioxidants and integral membrane localization. Embo J.11, 2991–3001 (1992). CASPubMedPubMed Central Google Scholar
Pahl, H. L. & Baeuerle, P. A. Activation of NF-κB by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett.392, 129–136 (1996). CASPubMed Google Scholar
Deniaud, A. et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene27, 285–299 (2008). This paper shows that protein misfolding in the ER causes calcium to leak into the cytosol, resulting in the outer membrane of mitochondria becoming more permeable. CASPubMed Google Scholar
Deng, J. et al. Translational repression mediates activation of nuclear factor κB by phosphorylated translation initiation factor 2. Mol. Cell. Biol.24, 10161–10168 (2004). CASPubMedPubMed Central Google Scholar
Wu, S. et al. Ultraviolet light activates NFκB through translational inhibition of IκBα synthesis. J. Biol. Chem.279, 34898–34902 (2004). References 38 and 39 show that NF-κB is activated by the PERK pathway of the UPR. CASPubMed Google Scholar
Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science287, 664–666 (2000). This paper shows how ER stress activates JNK by way of IRE1α. ADSCASPubMed Google Scholar
Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol.26, 3071–3084 (2006). CASPubMedPubMed Central Google Scholar
Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell103, 239–252 (2000). CASPubMed Google Scholar
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). CASPubMed Google Scholar
Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell124, 587–599 (2006). This study identifies CREBH, an ER-stress-inducible transcription factor that can mediate the acute-phase response. CASPubMed Google Scholar
Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol.4, 517–529 (2003). CAS Google Scholar
Gorlach, A., Klappa, P. & Kietzmann, T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal.8, 1391–1418 (2006). PubMed Google Scholar
Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal.9, 2277–2293 (2007). CASPubMed Google Scholar
Stamler, J. S., Singel, D. J. & Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science258, 1898–1902 (1992). ADSCASPubMed Google Scholar
Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature441, 513–517 (2006). ADSCASPubMed Google Scholar
Xu, K. Y., Huso, D. L., Dawson, T. M., Bredt, D. S. & Becker, L. C. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc. Natl Acad. Sci. USA96, 657–662 (1999). ADSCASPubMedPubMed Central Google Scholar
Xu, W., Liu, L., Charles, I. G. & Moncada, S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nature Cell Biol.6, 1129–1134 (2004). CASPubMed Google Scholar
Xue, X. et al. Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα. J. Biol. Chem.280, 33917–33925 (2005). CASPubMed Google Scholar
Lin, W., Harding, H. P., Ron, D. & Popko, B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J. Cell Biol.169, 603–612 (2005). CASPubMedPubMed Central Google Scholar
Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol.5, 781–792 (2003). CASPubMed Google Scholar
Maedler, K. et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest.110, 851–860 (2002). CASPubMedPubMed Central Google Scholar
Kharroubi, I. et al. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology145, 5087–5096 (2004). CASPubMed Google Scholar
Zhou, J. et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation110, 207–213 (2004). CASPubMed Google Scholar
Yamamuro, A., Yoshioka, Y., Ogita, K. & Maeda, S. Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells. Neurochem. Res.31, 657–664 (2006). CASPubMed Google Scholar
Kaufman, R. J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest.110, 1389–1398 (2002). CASPubMedPubMed Central Google Scholar
Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science306, 457–461 (2004). ADSPubMed Google Scholar
Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science313, 1137–1140 (2006). This paper shows that decreasing ER stress improves insulin sensitivity in mice with type 2 diabetes. ADSPubMedPubMed Central Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002). ADSCASPubMed Google Scholar
Aguirre, V. et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem.277, 1531–1537 (2002). CASPubMed Google Scholar
Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA103, 10741–10746 (2006). ADSCASPubMedPubMed Central Google Scholar
Williams, K. J. & Tabas, I. Atherosclerosis and inflammation. Science297, 521–522 (2002). CASPubMed Google Scholar
Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-κB- and MAP kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem.280, 21763–21772 (2005). This paper describes how ER-stress signalling and inflammatory-response signalling are integrated in cholesterol-loaded macrophages. CASPubMed Google Scholar
Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol.26, 2490–2496 (2006). CASPubMed Google Scholar
Tansey, M. G., McCoy, M. K. & Frank-Cannon, T. C. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol.208, 1–25 (2007). CASPubMedPubMed Central Google Scholar
Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ.13, 385–392 (2006). CASPubMed Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). ADSCASPubMed Google Scholar
Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev.22, 1451–1464 (2008). CASPubMedPubMed Central Google Scholar
Wang, H. Q. & Takahashi, R. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid. Redox Signal.9, 553–561 (2007). CASPubMed Google Scholar
Silva, R. M. et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem.95, 974–986 (2005). CASPubMedPubMed Central Google Scholar
Hetz, C. et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc. Natl Acad. Sci. USA105, 757–762 (2008). ADSCASPubMedPubMed Central Google Scholar
Paschen, W., Aufenberg, C., Hotop, S. & Mengesdorf, T. Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J. Cereb. Blood Flow Metab.23, 449–461 (2003). CASPubMed Google Scholar
DeLegge, M. H. & Smoke, A. Neurodegeneration and inflammation. Nutr. Clin. Pract.23, 35–41 (2008). PubMed Google Scholar
Frohman, E. M., Racke, M. K. & Raine, C. S. Multiple sclerosis — the plaque and its pathogenesis. N. Engl. J. Med.354, 942–955 (2006). CASPubMed Google Scholar
Lin, W. et al. Interferon-γ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain129, 1306–1318 (2006). PubMed Google Scholar
Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest.117, 448–456 (2007). This paper shows that IFN-γ can have a detrimental role or a protective role, mediated by the UPR, depending on the stage of multiple sclerosis. CASPubMedPubMed Central Google Scholar
Lees, J. R. & Cross, A. H. A little stress is good: IFN-γ, demyelination, and multiple sclerosis. J. Clin. Invest.117, 297–299 (2007). CASPubMedPubMed Central Google Scholar
Tabata, Y. et al. Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am. J. Physiol. Cell. Physiol.293, C411–C418 (2007). CASPubMed Google Scholar
Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science307, 935–939 (2005). ADSCASPubMed Google Scholar