Nodal signalling is involved in left–right asymmetry in snails (original) (raw)

References

  1. Massagué, J. & Gomis, R. R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006)
    Article Google Scholar
  2. Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left–right asymmetry. Nature Rev. Genet. 2, 103–113 (2002)
    Article Google Scholar
  3. Supp, D. M., Witte, D. P., Potter, S. S. & Brueckner, M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389, 963–966 (1997)
    Article ADS CAS Google Scholar
  4. Okada, Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459–468 (1999)
    Article CAS Google Scholar
  5. Morokuma, J., Ueno, M., Kawanishi, H., Saiga, H. & Nishida, H. HrNodal, the ascidian nodal-related gene, is expressed in the left side of the epidermis, and lies upstream of HrPitx . Dev. Genes Evol. 212, 439–446 (2002)
    Article CAS Google Scholar
  6. Duboc, V., Rottinger, E., Besnardeau, L. & Lepage, T. Nodal and BMP2/4 signaling organizes the oral–aboral axis of the sea urchin embryo. Dev. Cell 6, 397–410 (2004)
    Article CAS Google Scholar
  7. Duboc, V., Rottinger, E., Lapraz, F., Besnardeau, L. & Lepage, T. Left–right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev. Cell 9, 147–158 (2005)
    Article CAS Google Scholar
  8. Schilthuizen, M. & Davison, A. The convoluted evolution of snail chirality. Naturwissenschaften 92, 504–515 (2005)
    Article ADS CAS Google Scholar
  9. Boycott, A. E. & Diver, C. On the inheritance of sinistrality in Limnaea peregra . Proc. R. Soc. Lond. B 95, 207–213 (1923)
    Article ADS Google Scholar
  10. Sturtevant, A. H. Inheritance of direction of coiling in Limnaea . Science 58, 269–270 (1923)
    Article ADS CAS Google Scholar
  11. Freeman, G. & Lundelius, J. The developmental genetics of dextrality and sinistrality in the gastropod Lymnaea peregra . Wilhelm Roux Arch. Dev. Biol. 191, 69–83 (1982)
    Article Google Scholar
  12. Nederbragt, A. J., van Loon, A. E. & Dictus, W. J. Evolutionary biology: hedgehog crosses the snail’s midline. Nature 417, 811–812 (2002)
    Article ADS CAS Google Scholar
  13. van den Biggelaar, J. A. M., van Loon, A. E. & Damen, W. G. M. Mesentoblast and trochoblast specification in species with spiral cleavage predict their phyletic relations. Neth. J. Zool. 46, 8–21 (1995)
    Article Google Scholar
  14. Lartillot, N., Lespinet, O., Vervoort, M. & Adoutte, A. Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development 129, 1411–1421 (2002)
    CAS PubMed Google Scholar
  15. Dictus, W. J. A. G. & Damen, P. Cell lineage and clonal-contribution map of the trochophore larva of Patella vulgata (Mollusca). Mech. Dev. 62, 213–226 (1997)
    Article CAS Google Scholar
  16. Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62, 65–74 (2002)
    Article CAS Google Scholar
  17. Christiaen, L. et al. Evolutionary modification of mouth position in deuterostomes. Semin. Cell Dev. Biol. 18, 502–511 (2007)
    Article Google Scholar
  18. Nogi, T., Yuan, Y. E., Sorocco, D., Perez-Tomas, R. & Levin, M. Eye regeneration assay reveals an invariant functional left–right asymmetry in the early bilaterian, Dugesia japonica . Laterality 10, 193–205 (2005)
    Article Google Scholar
  19. Oviedo, N. J. & Levin, M. Gap junctions provide new links in left–right patterning. Cell 129, 645–647 (2007)
    Article CAS Google Scholar
  20. Ponder, W. F. & Lindberg, D. R. Towards a phylogeny of gastropod molluscs: analysis using morphological characters. Zool. J. Linn. Soc. 119, 83–265 (1997)
    Article Google Scholar
  21. Hibino, T., Nishino, A. & Amemiya, S. Phylogenetic correspondence of the body axes in bilaterians is revealed by the right-sided expression of Pitx genes in echinoderm larvae. Dev. Growth Differ. 48, 587–595 (2006)
    Article CAS Google Scholar
  22. Palmer, A. R. Symmetry breaking and the evolution of development. Science 306, 828–833 (2004)
    Article ADS CAS Google Scholar
  23. Duboc, V. & Lepage, T. A conserved role for the Nodal signaling pathway in the establishment of dorso–ventral and left–right axes in deuterostomes. J. Exp. Zool. B Mol. Dev. Evol. 310, 41–53 (2008)
    Article Google Scholar
  24. Levin, M. Left–right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122, 3–25 (2005)
    Article CAS Google Scholar
  25. Gould, M. C., Stephano, J. L., Ortíz-Barrón, B. J. & Pérez-Quezada, I. Maturation and fertilization in Lottia gigantea oocytes: intracellular pH, Ca2+, and electrophysiology. J. Exp. Zool. 290, 411–420 (2001)
    Article CAS Google Scholar
  26. Price, A. L. & Patel, N. H. Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef 2 in Parhyale hawaiensis . J. Exp. Zoolog. B Mol. Dev. Evol. 310, 24–40 (2008)
    Article Google Scholar
  27. Shibazaki, Y., Shimuzu, M. & Kuroda, R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14, 1462–1467 (2004)
    Article CAS Google Scholar
  28. Camey, T. & Verdonk, N. H. The early development of the snail Biomphalaria glabrata (Say) and the origin of the head organs. Neth. J. Zool. 20, 93–121 (1970)
    Article Google Scholar

Download references