Specific synapses develop preferentially among sister excitatory neurons in the neocortex (original) (raw)
References
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.)160, 106–154 (1962) ArticleCAS Google Scholar
Mountcastle, V. B., Davies, P. W. & Berman, A. L. Response properties of neurons of cat’s somatic sensory cortex to peripheral stimuli. J. Neurophysiol.20, 374–407 (1957) ArticleCAS Google Scholar
Kozloski, J., Hamzei-Sichani, F. & Yuste, R. Stereotyped position of local synaptic targets in neocortex. Science293, 868–872 (2001) ArticleCAS Google Scholar
Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.)500, 409–440 (1997) ArticleCAS Google Scholar
Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.3, e68 (2005) Article Google Scholar
Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro . Cereb. Cortex12, 936–953 (2002) Article Google Scholar
Yoshimura, Y., Dantzker, J. L. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature433, 868–873 (2005) ArticleADSCAS Google Scholar
Yoshimura, Y. & Callaway, E. M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neurosci.8, 1552–1559 (2005) ArticleCAS Google Scholar
Ohki, K. et al. Highly ordered arrangement of single neurons in orientation pinwheels. Nature442, 925–928 (2006) ArticleADSCAS Google Scholar
Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature433, 597–603 (2005) ArticleADSCAS Google Scholar
Sato, T. R., Gray, N. W., Mainen, Z. F. & Svoboda, K. The functional microarchitecture of the mouse barrel cortex. PLoS Biol.5, e189 (2007) Article Google Scholar
Maldonado, P. E., Godecke, I., Gray, C. M. & Bonhoeffer, T. Orientation selectivity in pinwheel centers in cat striate cortex. Science276, 1551–1555 (1997) ArticleCAS Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001) ArticleADSCAS Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci.7, 136–144 (2004) ArticleCAS Google Scholar
Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron31, 727–741 (2001) ArticleCAS Google Scholar
Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000) CAS Google Scholar
Tamamaki, N., Nakamura, K., Okamoto, K. & Kaneko, T. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res.41, 51–60 (2001) ArticleCAS Google Scholar
Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol.145, 61–83 (1972) ArticleCAS Google Scholar
Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron15, 311–321 (1995) ArticleCAS Google Scholar
Cepko, C. L. et al. Studies of cortical development using retrovirus vectors. Cold Spring Harb. Symp. Quant. Biol.55, 265–278 (1990) ArticleCAS Google Scholar
Walsh, C. & Cepko, C. L. Clonally related cortical cells show several migration patterns. Science241, 1342–1345 (1988) ArticleADSCAS Google Scholar
Walsh, C. & Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature362, 632–635 (1993) ArticleADSCAS Google Scholar
Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci.6, 877–888 (2005) ArticleCAS Google Scholar
Micheva, K. D. & Beaulieu, C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol.373, 340–354 (1996) ArticleCAS Google Scholar
Stern, E. A., Maravall, M. & Svoboda, K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo . Neuron31, 305–315 (2001) ArticleCAS Google Scholar
Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron32, 1149–1164 (2001) ArticleCAS Google Scholar
Thomson, A. M. & Bannister, A. P. Interlaminar connections in the neocortex. Cereb. Cortex13, 5–14 (2003) Article Google Scholar
Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci.27, 419–451 (2004) ArticleCAS Google Scholar
Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Rev. Neurosci.7, 883–890 (2006) ArticleCAS Google Scholar