Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA90, 2074–2077 (1993). ArticleCASPubMedPubMed Central Google Scholar
Gadisseux, J. F. & Evrard, P. Glial–neuronal relationship in the developing central nervous system. A histochemical–electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. Dev. Neurosci.7, 12–32 (1985). ArticleCASPubMed Google Scholar
Bruckner, G. & Biesold, D. Histochemistry of glycogen deposition in perinatal rat brain: importance of radial glial cells. J. Neurocytol.10, 749–757 (1981). ArticleCASPubMed Google Scholar
Choi, B. H. & Lapham, L. W. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res.148, 295–311 (1978). ArticleCASPubMed Google Scholar
Kriegstein, A. R. & Gotz, M. Radial glia diversity: a matter of cell fate. Glia43, 37–43 (2003). ArticlePubMed Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001). ArticleCASPubMed Google Scholar
Misson, J. P., Edwards, M. A., Yamamoto, M. & Caviness, V. S. Jr. Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res.466, 183–190 (1988). ArticleCASPubMed Google Scholar
Levitt, P., Cooper, M. L. & Rakic, P. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J. Neurosci.1, 27–39 (1981). ArticleCASPubMedPubMed Central Google Scholar
Schmechel, D. E. & Rakic, P. Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature277, 303–305 (1979). ArticleCASPubMed Google Scholar
Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J.1, 25–40 (1978). Google Scholar
Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron31, 727–741 (2001). ArticleCASPubMed Google Scholar
Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000). CASPubMed Google Scholar
Anthony, T. E. et al. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron41, 881–890 (2004). ArticleCASPubMed Google Scholar
Tamamaki, N. et al. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res.41, 51–60 (2001). ArticleCASPubMed Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci.7, 136–144 (2004). ArticleCASPubMed Google Scholar
Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron15, 311–321 (1995). ArticleCASPubMed Google Scholar
Rakic, P. Radial unit hypothesis of neocortical expansion. Novartis Found. Symp.228, 30–42; discussion 42–52 (2000). CASPubMed Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). ArticleCASPubMed Google Scholar
Ponting, C. & Jackson, A. P. Evolution of primary microcephaly genes and the enlargement of primate brains. Curr. Opin. Genet. Dev.15, 241–248 (2005). ArticleCASPubMed Google Scholar
Gilbert, S. L., Dobyns, W. B. & Lahn, B. T. Genetic links between brain development and brain evolution. Nature Rev. Genet.6, 581–590 (2005). ArticleCASPubMed Google Scholar
Woods, C. G., Bond, J. & Enard, W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet.76, 717–728 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet.32, 316–320 (2002). ArticleCASPubMed Google Scholar
Evans, P. D. et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum. Mol. Genet.13, 489–494 (2004). ArticleCASPubMed Google Scholar
Evans, P. D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science309, 1717–1720 (2005). ArticleCASPubMed Google Scholar
Kouprina, N. et al. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol.2, E126 (2004). ArticlePubMedPubMed Central Google Scholar
Mekel-Bobrov, N. et al. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science309, 1720–1722 (2005). ArticleCASPubMed Google Scholar
Ripoll, P., Pimpinelli, S., Valdivia, M. M. & Avila, J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell41, 907–912 (1985). ArticleCASPubMed Google Scholar
do Carmo Avides, M. & Glover, D. M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science283, 1733–1735 (1999). ArticleCASPubMed Google Scholar
Wakefield, J. G., Bonaccorsi, S. & Gatti, M. The Drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell. Biol.153, 637–648 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ponting, C. P. A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics22, 1031–1035 (2006). ArticleCASPubMed Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294, 2186–2189 (2001). ArticleCASPubMed Google Scholar
Groszer, M. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc. Natl Acad. Sci. USA103, 111–116 (2006). ArticleCASPubMed Google Scholar
Nieuwenhuys, R., ten Donkelaar, H. J. & Nicholson, C. The Central Nervous System of Vertebrates Vol. 3, 2219 (Springer, Berlin, 1998). Book Google Scholar
Striedter, G. F. Principles of Brain Evolution 436 (Sinauer Associates, Sunderland, 2005). Google Scholar
Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci.18, 383–388 (1995). ArticleCASPubMed Google Scholar
Rakic, P. Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex13, 541–549 (2003). ArticlePubMed Google Scholar
Roth, K. A. et al. Epistatic and independent functions of caspase-3 and Bcl-XL in developmental programmed cell death. Proc. Natl Acad. Sci. USA97, 466–471 (2000). ArticleCASPubMedPubMed Central Google Scholar
Smart, I. H. & McSherry, G. M. Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat.134, 415–442 (1982). CASPubMedPubMed Central Google Scholar
Megason, S. G. & McMahon, A. P. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development129, 2087–2098 (2002). CASPubMed Google Scholar
Parr, B. A., Shea, M. J., Vassileva, G. & McMahon, A. P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development119, 247–261 (1993). CASPubMed Google Scholar
Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development128, 1983–1993 (2001). CASPubMed Google Scholar
Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex14, 1408–1420 (2004). ArticlePubMed Google Scholar
Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci.25, 247–251 (2005). ArticleCASPubMedPubMed Central Google Scholar
Anderson, S. A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron19, 27–37 (1997). ArticleCASPubMed Google Scholar
Krubitzer, L. & Kahn, D. M. Nature versus nurture revisited: an old idea with a new twist. Prog. Neurobiol.70, 33–52 (2003). ArticlePubMed Google Scholar
Britanova, O. et al. A novel mode of tangential migration of cortical projection neurons. Dev. Biol. 30 Jun 2006 (doi:10.1016/j.ydbio.2006.06.040).
Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron15, 299–310 (1995). ArticleCASPubMed Google Scholar
Walsh, C. & Cepko, C. L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science255, 434–440 (1992). ArticleCASPubMed Google Scholar
Walsh, C. & Cepko, C. L. Clonally related cortical cells show several migration patterns. Science241, 1342–1345 (1988). ArticleCASPubMed Google Scholar
Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA101, 3196–3201 (2004). ArticleCASPubMedPubMed Central Google Scholar
Iacopetti, P. et al. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl Acad. Sci. USA96, 4639–4644 (1999). ArticleCASPubMedPubMed Central Google Scholar
Martinez-Cerdeno, V., Noctor, S. C. & Kriegstein, A. R. The role of the intermediate progenitor cells in the evolutionary expansion on the cerebral cortex. Cereb. Cortex16, 152–161 (2006). Article Google Scholar
Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex12, 37–53 (2002). ArticlePubMed Google Scholar
Zecevic, N., Chen, Y. & Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol.491, 109–122 (2005). ArticlePubMedPubMed Central Google Scholar
Noctor, S. C., Scholnicoff, N. J. & Juliano, S. L. Histogenesis of ferret somatosensory cortex. J. Comp. Neurol.387, 179–193 (1997). ArticleCASPubMed Google Scholar
Kornack, D. R. & Rakic, P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc. Natl Acad. Sci. USA95, 1242–1246 (1998). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T., Nowakowski, R. S. and Caviness, V. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci.15, 6046–6057 (1995). ArticleCASPubMedPubMed Central Google Scholar
DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. I. Microstructure of the neocortex: comparative aspects. J. Neurocytol.31, 299–316 (2002). ArticlePubMed Google Scholar
Richman, D. P., Stewart, R. M., Hutchinson, J. W. & Caviness, V. S. Jr. Mechanical model of brain convolutional development. Science189, 18–21 (1975). ArticleCASPubMed Google Scholar
Bayer, S. A. & Altman, J. The Human Brain During the Second Trimester (Taylor & Francis, Boca Raton, 2005). Book Google Scholar
Nery, S., Fishell, G. & Corbin, J. G. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neurosci.5, 1279–1287 (2002). ArticleCASPubMed Google Scholar
de Carlos, J. A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci.16, 6146–6156 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci.19, 7881–7888 (1999). ArticleCASPubMedPubMed Central Google Scholar
Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development128, 353–363 (2001). CASPubMed Google Scholar
Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. Interneuron migration from basal forebrain to neocortex: dependence on dlx genes. Science278, 474–476 (1997). ArticleCASPubMed Google Scholar
Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neurosci.2, 461–466 (1999). ArticleCASPubMed Google Scholar
Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development128, 3759–3771 (2001). CASPubMed Google Scholar
Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development126, 3359–3370 (1999). CASPubMed Google Scholar
Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci.17, 8313–8323 (1997). ArticleCASPubMedPubMed Central Google Scholar
Halliday, A. L. & Cepko, C. L. Generation and migration of cells in the developing striatum. Neuron9, 15–26 (1992). ArticleCASPubMed Google Scholar
Walsh, C. & Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature362, 632–635 (1993). ArticleCASPubMed Google Scholar
Reid, C. B. & Walsh, C. A. Evidence of common progenitors and patterns of dispersion in rat striatum and cerebral cortex. J. Neurosci.22, 4002–4014 (2002). ArticleCASPubMedPubMed Central Google Scholar
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature417, 645–649 (2002). ArticleCASPubMed Google Scholar
Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol.226, 34–44 (2000). ArticleCASPubMed Google Scholar
Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes. Dev.12, 246–260 (1998). ArticleCASPubMedPubMed Central Google Scholar
Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell106, 511–521 (2001). ArticleCASPubMed Google Scholar
Cui, X. & Doe, C. Q. ming is expressed in neuroblast sublineages and regulates gene expression in the Drosophila central nervous system. Development116, 943–952 (1992). CASPubMed Google Scholar
Mellerick, D. M., Kassis, J. A., Zhang, S. D. & Odenwald, W. F. castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in Drosophila. Neuron9, 789–803 (1992). ArticleCASPubMed Google Scholar
Novotny, T., Eiselt, R. & Urban, J. Hunchback is required for the specification of the early sublineage of neuroblast 7–3 in the Drosophila central nervous system. Development129, 1027–1036 (2002). CASPubMed Google Scholar
Zhong, W. Diversifying neural cells through order of birth and asymmetry of division. Neuron37, 11–14 (2003). ArticleCASPubMed Google Scholar
Frantz, G. D., Weimann, J. M., Levin, M. E. & McConnell, S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci.14, 5725–5740 (1994). ArticleCASPubMedPubMed Central Google Scholar
Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron47, 817–831 (2005). ArticleCASPubMed Google Scholar
Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol.479, 168–180 (2004). ArticleCASPubMed Google Scholar
Hanashima, C., Li, S. C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science303, 56–59 (2004). ArticleCASPubMed Google Scholar
Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci.9, 743–751 (2006). ArticleCASPubMed Google Scholar
Lavdas, A. A., Mione, M. C. & Parnavelas, J. G. Neuronal clones in the cerebral cortex show morphological and neurotransmitter heterogeneity during development. Cereb. Cortex6, 490–497 (1996). ArticleCASPubMed Google Scholar
Williams, B. P., Read, J. & Price, J. The generation of neurons and oligodendrocytes from a common precursor cell. Neuron7, 685–693 (1991). ArticleCASPubMed Google Scholar
Luskin, M. B., Parnavelas, J. G. & Barfield, J. A. Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. J. Neurosci.13, 1730–1750 (1993). ArticleCASPubMedPubMed Central Google Scholar
Walsh, C. & Cepko, C. L. Cell lineage and cell migration in the developing cerebral cortex. Experientia46, 940–947 (1990). ArticleCASPubMed Google Scholar
Temple, S. Division and differentiation of isolated CNS blast cells in microculture. Nature340, 471–473 (1989). ArticleCASPubMed Google Scholar
Bayer, S. A. & Altman, J. Neocortical Development (Raven, New York, 1991). Google Scholar