Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution (original) (raw)

References

  1. Burge, C. B., Tuschl, T. & Sharp, P. A. in The RNA World II (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 525–560 (Cold Spring Harbor Laboratory Press, 1999)
    Google Scholar
  2. Will, C. L. & Lührmann, R. in The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 369–400 (Cold Spring Harbor Laboratory Press, 2006)
    Google Scholar
  3. Yu, Y.-T., Scharl, E. C., Smith, C. M. & Steitz, J. A. in The RNA World II (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 487–524 (Cold Spring Harbor Laboratory Press, 1999)
    Google Scholar
  4. Bringmann, P. & Lührmann, R. Purification of the individual snRNPs U1, U2, U5 and U4/U6 from HeLa cells and characterization of their protein constituents. EMBO J. 5, 3509–3516 (1986)
    Article CAS Google Scholar
  5. Jurica, M. S. & Moore, M. J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003)
    Article CAS Google Scholar
  6. Makarov, E. M. et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208 (2002)
    Article ADS CAS Google Scholar
  7. Guthrie, C. & Patterson, B. Spliceosomal snRNAs. Annu. Rev. Genet. 22, 387–419 (1988)
    Article CAS Google Scholar
  8. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005)
    Article CAS Google Scholar
  9. Zhuang, Y. & Weiner, A. M. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46, 827–835 (1986)
    Article CAS Google Scholar
  10. Ruby, S. W. & Abelson, J. An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science 242, 1028–1035 (1988)
    Article ADS CAS Google Scholar
  11. Séraphin, B. & Rosbash, M. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59, 349–358 (1989)
    Article Google Scholar
  12. Kohtz, J. D. et al. Protein–protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994)
    Article ADS CAS Google Scholar
  13. Graveley, B. R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000)
    Article CAS Google Scholar
  14. Krol, A. et al. Solution structure of human U1 snRNA. Derivation of a possible three-dimensional model. Nucleic Acids Res. 18, 3803–3811 (1990)
    Article CAS Google Scholar
  15. Patton, J. R. & Pederson, T. The Mr 70,000 protein of the U1 small nuclear ribonucleoprotein particle binds to the 5′ stem-loop of U1 RNA and interacts with Sm domain proteins. Proc. Natl Acad. Sci. USA 85, 747–751 (1988)
    Article ADS CAS Google Scholar
  16. Query, C. C., Bentley, R. C. & Keene, J. D. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57, 89–101 (1989)
    Article CAS Google Scholar
  17. Bach, M., Krol, A. & Lührmann, R. Structure-probing of U1 snRNPs gradually depleted of the U1-specific proteins A, C and 70k. Evidence that A interacts differentially with developmentally regulated mouse U1 snRNA variants. Nucleic Acids Res. 18, 449–457 (1990)
    Article CAS Google Scholar
  18. Scherly, D., Boelens, W., Dathan, N. A., van Venrooij, W. J. & Mattaj, I. W. Major determinants of the specificity of interaction between small nuclear ribonucleoproteins U1A and U2B'' and their cognate RNAs. Nature 345, 502–506 (1990)
    Article ADS CAS Google Scholar
  19. Oubridge, C., Ito, N., Evans, P. R., Teo, C. H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994)
    Article ADS CAS Google Scholar
  20. Nelissen, R. L., Will, C. L., van Venrooij, W. J. & Lührmann, R. The association of the U1-specific 70K and C proteins with U1 snRNPs is mediated in part by common U snRNP proteins. EMBO J. 13, 4113–4125 (1994)
    Article CAS Google Scholar
  21. Muto, Y. et al. The structure and biochemical properties of the human spliceosomal protein U1C. J. Mol. Biol. 341, 185–198 (2004)
    Article CAS Google Scholar
  22. Kambach, C. et al. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96, 375–387 (1999)
    Article CAS Google Scholar
  23. Kastner, B. & Lührmann, R. Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus. EMBO J. 8, 277–286 (1989)
    Article CAS Google Scholar
  24. Kastner, B., Kornstädt, U., Bach, M. & Lührmann, R. Structure of the small nuclear RNP particle U1: identification of the two structural protuberances with RNP-antigens A and 70K. J. Cell Biol. 116, 839–849 (1992)
    Article CAS Google Scholar
  25. Stark, H., Dube, P., Lührmann, R. & Kastner, B. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409, 539–542 (2001)
    Article ADS CAS Google Scholar
  26. Clemons, W. M. et al. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400, 833–840 (1999)
    Article ADS CAS Google Scholar
  27. Ban, N. et al. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 400, 841–847 (1999)
    Article ADS CAS Google Scholar
  28. Heinrichs, V., Bach, M., Winkelmann, G. & Lührmann, R. U1-specific protein C needed for efficient complex formation of U1 snRNP with a 5′ splice site. Science 247, 69–72 (1990)
    Article ADS CAS Google Scholar
  29. Will, C. L. et al. In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res. 24, 4614–4623 (1996)
    Article CAS Google Scholar
  30. Kim, C. H. & Tinoco, I. A retroviral RNA kissing complex containing only two G-C base pairs. Proc. Natl Acad. Sci. USA 97, 9396–9401 (2000)
    Article ADS CAS Google Scholar
  31. Cowtan, K. D., Zhang, K. Y. J. & Main, P. in International Tables for Crystallography Vol. F: Crystallography of Biological Macromolecules (eds Rossmann, M. G. & Arnold, E.) 705–710 (Kluwer, 2001)
    Google Scholar
  32. Duckett, D. R., Murchie, A. I. H. & Lilley, D. M. J. The global folding of four-way helical junctions in RNA, including that in U1 snRNA. Cell 83, 1027–1036 (1995)
    Article CAS Google Scholar
  33. Törö, I. et al. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J. 20, 2293–2303 (2001)
    Article Google Scholar
  34. Urlaub, H., Raker, V. A., Kostka, S. & Lührmann, R. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20, 187–196 (2001)
    Article CAS Google Scholar
  35. Lu, D., Searles, M. A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426, 96–100 (2003)
    Article ADS CAS Google Scholar
  36. Urlaub, H., Hartmuth, K., Kostka, S., Grelle, G. & Lührmann, R. A general approach for identification of RNA-protein cross-linking sites within native human spliceosomal small nuclear ribonucleoproteins (snRNPs). J. Biol. Chem. 275, 41458–41468 (2000)
    Article CAS Google Scholar
  37. Zhou, C. & Huang, R. H. Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism. Proc. Natl Acad. Sci. USA 105, 16142–16147 (2008)
    Article ADS CAS Google Scholar
  38. Du, H. & Rosbash, M. The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing. Nature 419, 86–90 (2002)
    Article ADS CAS Google Scholar
  39. Chen, J. Y.-F. et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell 7, 227–232 (2001)
    Article CAS Google Scholar
  40. Ismaïli, N., Sha, M., Gustafson, E. H. & Konarska, M. M. The 100-kDa U5 snRNP protein (hPrp28p) contacts the 5′ splice site through its ATPase site. RNA 7, 182–193 (2001)
    Article Google Scholar
  41. Steitz, T. A. Visualizing polynucleotide polymerase machines at work. EMBO J. 25, 3458–3468 (2006)
    Article CAS Google Scholar
  42. Price, S. R., Evans, P. R. & Nagai, K. Crystal structure of the spliceosomal U2B′′–U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–650 (1998)
    Article ADS CAS Google Scholar
  43. Mizushima, S. & Nomura, M. Assembly mapping of 30S ribosomal proteins from E. coli . Nature 226, 1214–1218 (1970)
    Article ADS CAS Google Scholar
  44. Bedford, M. T., Reed, R. & Leder, P. WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: The proline, glycine and methionine-rich motif. Proc. Natl Acad. Sci. USA 95, 10602–10607 (1998)
    Article ADS CAS Google Scholar
  45. Dönmez, G., Hartmuth, K., Kastner, B., Will, C. L. & Lührmann, R. The 5′ end of U2 snRNA is in close proximity to U1 and functional sites of the pre-mRNA in early spliceosomal complexes. Mol. Cell 25, 399–411 (2007)
    Article Google Scholar
  46. Tazi, J. et al. Thiophosphorylation of U1-70K protein inhibits pre-mRNA splicing. Nature 363, 283–286 (1993)
    Article ADS CAS Google Scholar
  47. Smith, C. W. & Valcárcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000)
    Article CAS Google Scholar
  48. Leslie, A. G. W. The integration of macromolecular diffraction data. Acta Crystallogr. D 62, 48–57 (2006)
    Article Google Scholar
  49. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)
    Article Google Scholar
  50. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
  51. de la Fortelle, E. & Bricogne, G. Maximum likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–493 (1997)
    Article CAS Google Scholar
  52. Knäblein, J. et al. Ta6, a tool for phase determination of large biological assemblies by X-ray crystallography. J. Mol. Biol. 270, 1–7 (1997)
    Article ADS Google Scholar
  53. Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)
    Article CAS Google Scholar
  54. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)
    Article Google Scholar
  56. Nagai, K., Oubridge, C., Jessen, T.-H., Li, J. & Evans, P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348, 515–520 (1990)
    Article ADS CAS Google Scholar
  57. DeLano, W. L. PyMOL Molecular Viewerhttp://www.pymol.org〉 (2002)
    Google Scholar

Download references