A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish (original) (raw)
References
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods3, 281–286 (2006) ArticleCAS Google Scholar
Bienert, G. P., Schjoerring, J. K. & Jahn, T. P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta1758, 994–1003 (2006) ArticleCAS Google Scholar
Oktyabrsky, O. N. & Smirnova, G. V. Redox regulation of cellular functions. Biochemistry72, 132–145 (2007) CASPubMed Google Scholar
Redd, M. J., Cooper, L., Wood, W., Stramer, B. & Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Phil. Trans. R. Soc. Lond. B359, 777–784 (2004) ArticleCAS Google Scholar
Renshaw, S. A., Loynes, C. A., Elworthy, S., Ingham, P. W. & Whyte, M. K. Modeling inflammation in the zebrafish: how a fish can help us understand lung disease. Exp. Lung Res.33, 549–554 (2007) ArticleCAS Google Scholar
Grabher, C. et al. Birth and life of tissue macrophages and their migration in embryogenesis and inflammation in medaka. J. Leukoc. Biol.81, 263–271 (2007) ArticleCAS Google Scholar
Huttenlocher, A. & Poznansky, M. C. Reverse leukocyte migration can be attractive or repulsive. Trends Cell Biol.18, 298–306 (2008) ArticleCAS Google Scholar
Maeda, H. et al. Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Edn Engl.43, 2389–2391 (2004) ArticleCAS Google Scholar
Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol.80, 1281–1288 (2006) ArticleCAS Google Scholar
Hall, C., Flores, M. V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol.7, 42 (2007) Article Google Scholar
Sen, C. K. & Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta1780, 1348–1361 (2008) ArticleCAS Google Scholar
Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev.87, 245–313 (2007) ArticleCAS Google Scholar
Kawahara, T., Quinn, M. T. & Lambeth, J. D. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol. Biol.7, 109 (2007) Article Google Scholar
Ameziane-El-Hassani, R. et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem.280, 30046–30054 (2005) ArticleCAS Google Scholar
ten Freyhaus, H. et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc. Res.71, 331–341 (2006) ArticleCAS Google Scholar
Stielow, C. et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun.344, 200–205 (2006) ArticleCAS Google Scholar
Lange, S. et al. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem-cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc. Res.81, 159–168 (2009) ArticleCAS Google Scholar
Tegtmeier, F. et al. Compounds containing a N-heteroaryl moiety linked to fused ring moieties for the inhibition of NAD(P)H oxidases and platelet activation. Patent WO/2005/111041. (2005)
Donko, A., Peterfi, Z., Sum, A., Leto, T. & Geiszt, M. Dual oxidases. Phil. Trans. R. Soc. Lond. B360, 2301–2308 (2005) ArticleCAS Google Scholar
Geiszt, M., Witta, J., Baffi, J., Lekstrom, K. & Leto, T. L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J.17, 1502–1504 (2003) ArticleCAS Google Scholar
Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science310, 847–850 (2005) ArticleADSCAS Google Scholar
Forteza, R., Salathe, M., Miot, F., Forteza, R. & Conner, G. E. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol.32, 462–469 (2005) ArticleCAS Google Scholar
Wesley, U. V., Bove, P. F., Hristova, M., McCarthy, S. & van der Vliet, A. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J. Biol. Chem.282, 3213–3220 (2007) ArticleCAS Google Scholar
Klyubin, I. V., Kirpichnikova, K. M. & Gamaley, I. A. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol.70, 347–351 (1996) CASPubMed Google Scholar
Li, W., Liu, G., Chou, I. N. & Kagan, H. M. Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J. Cell. Biochem.78, 550–557 (2000) ArticleCAS Google Scholar
Todorovic, S. M. et al. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron31, 75–85 (2001) ArticleCAS Google Scholar
Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl Acad. Sci. USA101, 16419–16424 (2004) ArticleADSCAS Google Scholar
Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature442, 457–460 (2006) ArticleADSCAS Google Scholar
Subramanian, K. K. et al. Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood109, 4028–4037 (2007) ArticleCAS Google Scholar
Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nature Cell Biol.9, 36–44 (2007) ArticleCAS Google Scholar
Nusslein-Volhard, C. & Dahm, R. Zebrafish (Oxford Univ. Press, 2002)
Chen, J. et al. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev.19, 2900–2911 (2005) ArticleCAS Google Scholar
Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development134, 4147–4156 (2007) ArticleCAS Google Scholar