Role of the polycomb protein EED in the propagation of repressive histone marks (original) (raw)
References
Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell128, 735–745 (2007) ArticleCAS Google Scholar
Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111, 185–196 (2002) ArticleCAS Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002) ArticleADSCAS Google Scholar
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16, 2893–2905 (2002) ArticleCAS Google Scholar
Müller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell111, 197–208 (2002) Article Google Scholar
Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3–K27 trimethylation at Polycomb target genes. EMBO J.26, 4078–4088 (2007) ArticleCAS Google Scholar
Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo . Mol. Cell. Biol.28, 2718–2731 (2008) ArticleCAS Google Scholar
Han, Z. et al. Structural basis of EZH2 recognition by EED. Structure15, 1306–1315 (2007) ArticleCAS Google Scholar
Schiefner, A. et al. Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli . J. Biol. Chem.279, 5588–5596 (2004) ArticleCAS Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell128, 693–705 (2007) ArticleCAS Google Scholar
Nekrasov, M., Wild, B. & Muller, J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep.6, 348–353 (2005) ArticleCAS Google Scholar
Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell128, 1003–1012 (2007) ArticleCAS Google Scholar
Tie, F., Stratton, C. A., Kurzhals, R. L. & Harte, P. J. The N terminus of Drosophila ESC binds directly to histone H3 and is required for E(Z)-dependent trimethylation of H3 lysine 27. Mol. Cell. Biol.27, 2014–2026 (2007) ArticleCAS Google Scholar
Struhl, G. & Brower, D. Early role of the esc+ gene product in the determination of segments in Drosophila . Cell31, 285–292 (1982) ArticleCAS Google Scholar
Ohno, K., McCabe, D., Czermin, B., Imhof, A. & Pirrotta, V. ESC, ESCL and their roles in Polycomb Group mechanisms. Mech. Dev.125, 527–541 (2008) ArticleCAS Google Scholar
Kurzhals, R. L., Tie, F., Stratton, C. A. & Harte, P. J. Drosophila ESC-like can substitute for ESC and becomes required for Polycomb silencing if ESC is absent. Dev. Biol.313, 293–306 (2008) ArticleCAS Google Scholar
Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol.10, 1291–1300 (2008) ArticleCAS Google Scholar
Huang, Y., Fang, J., Bedford, M. T., Zhang, Y. & Xu, R.-M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science312, 748–751 (2006) ArticleADSCAS Google Scholar
Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature442, 91–95 (2006) ArticleADSCAS Google Scholar
Peña, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature442, 100–103 (2006) ArticleADS Google Scholar
Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. & Wilson, J. R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell33, 181–191 (2009) ArticleCAS Google Scholar
Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell87, 95–104 (1996) ArticleCAS Google Scholar
Murzina, N. V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure16, 1077–1085 (2008) ArticleCAS Google Scholar
Schwartz, Y. B. & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol.20, 266–273 (2008) ArticleCAS Google Scholar
Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development134, 223–232 (2007) ArticleCAS Google Scholar
Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev.20, 2041–2054 (2006) ArticleCAS Google Scholar
Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster . Nature Genet.38, 700–705 (2006) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol.267, 307–326 (1997) Article Google Scholar
Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D55, 849–861 (1999) ArticleCAS Google Scholar
Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D56, 965–972 (2000) ArticleCAS Google Scholar
Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallogr. D53, 448–455 (1997) ArticleCAS Google Scholar
Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994) Article Google Scholar
Collaborative Computational Project. The _CCP_4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) Article Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) Article Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Luger, K., Rechsteiner, T. J., Flaus, A. J., Waye, M. M. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol.272, 301–311 (1997) ArticleCAS Google Scholar
Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell32, 503–518 (2008) ArticleCAS Google Scholar
Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA104, 3312–3317 (2007) ArticleADSCAS Google Scholar
Bateman, J. R., Lee, A. M. & Wu, C. T. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics173, 769–777 (2006) ArticleCAS Google Scholar