A model for transmission of the H3K27me3 epigenetic mark (original) (raw)
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111, 185–196 (2002). ArticleCASPubMed Google Scholar
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16, 2893–2905 (2002). ArticleCASPubMedPubMed Central Google Scholar
Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell111, 197–208 (2002). ArticleCASPubMed Google Scholar
Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev.18, 2973–2983 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell Biol.27, 3769–3779 (2007). ArticleCASPubMedPubMed Central Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). ArticleCASPubMed Google Scholar
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Faust, C., Lawson, K. A., Schork, N. J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development125, 4495–4506 (1998). CASPubMed Google Scholar
Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J.23, 4061–4071 (2004). ArticleCASPubMedPubMed Central Google Scholar
Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev.15, 163–176 (2005). ArticleCASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). ArticleCASPubMed Google Scholar
Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer6, 846–856 (2006). ArticleCAS Google Scholar
Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell118, 409–418 (2004). ArticleCASPubMed Google Scholar
Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev.15, 267–285 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P. et al. EZH2 is downstream of the pRB–E2F pathway, essential for proliferation and amplified in cancer. EMBO J.22, 5323–5335 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell129, 665–679 (2007). ArticleCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Lai, J. S. & Herr, W. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl Acad. Sci. USA89, 6958–6962 (1992). ArticleCASPubMedPubMed Central Google Scholar
van Lohuizen, M. et al. Interaction of mouse polycomb-group (Pc-G) proteins Enx1 and Enx2 with Eed: indication for separate Pc-G complexes. Mol. Cell Biol.18, 3572–3579 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dietrich, N et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A–ARF locus. EMBO J. (2007).
Muller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev.16, 476–484 (2006). ArticlePubMed Google Scholar
Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet.8, 9–22 (2007). ArticleCASPubMed Google Scholar
Brown, J. L., Mucci, D., Whiteley, M., Dirksen, M. L. & Kassis, J. A. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol. Cell1, 1057–1064 (1998). ArticleCASPubMed Google Scholar
Brown, J. L., Fritsch, C., Mueller, J. & Kassis, J. A. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development130, 285–94 (2003). ArticleCASPubMed Google Scholar
Poux, S., Melfi, R. & Pirrotta, V. Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev.15, 2509–2514 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell98, 37–46 (1999). ArticleCASPubMed Google Scholar
Francis, N. J., Saurin, A. J., Shao, Z. & Kingston, R. E. Reconstitution of a functional core polycomb repressive complex. Mol. Cell8, 545–556 (2001). ArticleCASPubMed Google Scholar
McCall, K. & Bender, W. Probes of chromatin accessibility in the Drosophila bithorax complex respond differently to Polycomb-mediated repression. EMBO J.15, 569–580 (1996). ArticleCASPubMedPubMed Central Google Scholar
Levine, S. S., King, I. F. & Kingston, R. E. Division of labor in polycomb group repression. Trends Biochem. Sci.29, 478–485 (2004). ArticleCASPubMed Google Scholar
Hernandez-Munoz, I., Taghavi, P., Kuijl, C., Neefjes, J. & van Lohuizen, M. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol. Cell Biol.25, 11047–11058 (2005). ArticleCASPubMedPubMed Central Google Scholar
Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature449, 731–734 (2007). ArticleCASPubMed Google Scholar
De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell130, 1083–1094 (2007). ArticleCASPubMed Google Scholar
Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA104, 18439–18444 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lan, F. et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature449, 689–694 (2007). ArticleCASPubMed Google Scholar
Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science318, 447–450 (2007). ArticleCASPubMed Google Scholar