Mechanism of folding chamber closure in a group II chaperonin (original) (raw)
Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell92, 351–366 (1998) ArticleCAS Google Scholar
Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem.70, 603–647 (2001) ArticleCAS Google Scholar
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002) ArticleCASADS Google Scholar
Ditzel, L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell93, 125–138 (1998) ArticleCAS Google Scholar
Reissmann, S., Parnot, C., Booth, C. R., Chiu, W. & Frydman, J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nature Struct. Mol. Biol.14, 432–440 (2007) ArticleCAS Google Scholar
Meyer, A. S. et al. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell113, 369–381 (2003) ArticleCAS Google Scholar
Kusmierczyk, A. R. & Martin, J. Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem. J.371, 669–673 (2003) ArticleCAS Google Scholar
Dobson, C. M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol.15, 3–16 (2004) ArticleCAS Google Scholar
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science319, 916–919 (2008) ArticleCASADS Google Scholar
Yam, A. Y. et al. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nature Struct. Mol. Biol.15, 1255–1262 (2008) ArticleCAS Google Scholar
Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nature Cell Biol.8, 1155–1162 (2006) ArticleCAS Google Scholar
Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nature Cell Biol.8, 1163–1169 (2006) ArticleCAS Google Scholar
Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature371, 578–586 (1994) ArticleCASADS Google Scholar
Saibil, H. R. et al. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr. Biol.3, 265–273 (1993) ArticleCAS Google Scholar
Booth, C. R. et al. Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nature Struct. Mol. Biol.15, 746–753 (2008) ArticleCAS Google Scholar
Kusmierczyk, A. R. & Martin, J. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Lett.547, 201–204 (2003) ArticleCAS Google Scholar
Clare, D. K. et al. Multiple states of a nucleotide-bound group 2 chaperonin. Structure16, 528–534 (2008) ArticleCAS Google Scholar
Blow, D. Outline of Crystallography for Biologists (Oxford Univ. Press, 2002) Google Scholar
Ludtke, S. J. et al. De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure16, 441–448 (2008) ArticleCAS Google Scholar
Jiang, W. et al. Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy. Nature451, 1130–1134 (2008) ArticleCASADS Google Scholar
Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl Acad. Sci. USA105, 1867–1872 (2008) ArticleCASADS Google Scholar
Yu, X., Jin, L. & Zhou, Z. H. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature453, 415–419 (2008) ArticleCASADS Google Scholar
Braig, K., Adams, P. D. & Brünger, A. T. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution. Nature Struct. Biol.2, 1083–1094 (1995) ArticleCAS Google Scholar
Schoehn, G., Hayes, M., Cliff, M., Clarke, A. R. & Saibil, H. R. Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. J. Mol. Biol.301, 323–332 (2000) ArticleCAS Google Scholar
Schröder, G. F., Brunger, A. T. & Levitt, M. Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure15, 1630–1641 (2007) Article Google Scholar
Xu, Z., Horwich, A. L. & Sigler, P. B. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature388, 741–750 (1997) ArticleCASADS Google Scholar
Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L. & Sigler, P. B. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS. Nature Struct. Biol.3, 170–177 (1996) ArticleCAS Google Scholar
Tang, Y. C. et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell125, 903–914 (2006) ArticleCAS Google Scholar
Suzuki, M. et al. Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state. J. Biol. Chem.283, 23931–23939 (2008) ArticleCAS Google Scholar
Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol.128, 82–97 (1999) ArticleCAS Google Scholar
Yang, C. et al. Estimating contrast transfer function and associated parameters by constrained nonlinear optimization. J. Microsc.233, 391–403 (2009) ArticleMathSciNetCAS Google Scholar
Ludtke, S. J., Jakana, J., Song, J.-L., Chuang, D. & Chiu, W. A 11.5 Å single particle reconstruction of GroEL using EMAN. J. Mol. Biol.314, 253–262 (2001) ArticleCAS Google Scholar
Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik73, 146–156 (1986) Google Scholar
Fernández, J. J., Luque, D., Caston, J. R. & Carrascosa, J. L. Sharpening high resolution information in single particle electron cryomicroscopy. J. Struct. Biol.164, 170–175 (2008) Article Google Scholar
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol.333, 721–745 (2003) ArticleCAS Google Scholar
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) ArticleCAS Google Scholar
Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics22, 195–201 (2006) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Lovell, S. C. et al. Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins50, 437–450 (2003) ArticleCAS Google Scholar