The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions (original) (raw)
References
Zoghbi, H. Y. & Orr, H. T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci.23, 217–247 (2000). ArticleCAS Google Scholar
Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature370, 111–117 (1994). ArticleCAS Google Scholar
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev. Neurosci.4, 49–60 (2003). ArticleCAS Google Scholar
Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci.6, 11–22 (2005). ArticleCAS Google Scholar
Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA96, 4604–4609 (1999). ArticleCAS Google Scholar
Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem.70, 603–647 (2001). ArticleCAS Google Scholar
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002). ArticleCAS Google Scholar
Nollen, E. A. et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl Acad. Sci. USA101, 6403–6408 (2004). ArticleCAS Google Scholar
Spiess, C., Meyer, A. S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol.14, 598–604 (2004). ArticleCAS Google Scholar
Melville, M. W., McClellan, A. J., Meyer, A. S., Darveau, A. & Frydman, J. The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. Mol. Cell Biol.23, 3141–3151 (2003). ArticleCAS Google Scholar
Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA97, 1589–1594 (2000). ArticleCAS Google Scholar
Vinh, D. B. & Drubin, D. G. A yeast TCP-1-like protein is required for actin function in vivo. Proc. Natl Acad. Sci. USA91, 9116–9120 (1994). ArticleCAS Google Scholar
Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol. Cell12, 87–100 (2003). ArticleCAS Google Scholar
Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics169, 1915–1925 (2005). ArticleCAS Google Scholar
Muchowski, P. J. et al. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA97, 7841–7846 (2000). ArticleCAS Google Scholar
Muchowski, P. J., Ning, K., D' Souza-Schorey, C. & Fields, S. Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl Acad. Sci. USA99, 727–732 (2002). ArticleCAS Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). ArticleCAS Google Scholar
Jana, N. R., Tanaka, M., Wang, G. & Nukina, N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet.9, 2009–2018 (2000). ArticleCAS Google Scholar
Albanese, V., Yam, A. Y., Baughman, J., Parnot, C. & Frydman, J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell124, 75–88 (2006). ArticleCAS Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). ArticleCAS Google Scholar
Poirier, M. A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem.277, 41032–41037 (2002). ArticleCAS Google Scholar
Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nature Struct. Mol. Biol.11, 1215–1222 (2004). ArticleCAS Google Scholar
Marx, J. Neurodegeneration. Huntington's research points to possible new therapies. Science310, 43–45 (2005). ArticleCAS Google Scholar
Adams, A., Gottschling, D. E., Daiser, C. A. & Stearns, T. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, New York, 1997). Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). ArticleCAS Google Scholar
Bennett, E. J., Bence, N. F., Jayakumar, R. & Kopito, R. R. Global impairment of the ubiquitin–proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell17, 351–365 (2005). ArticleCAS Google Scholar
Kabir, M. A. et al. Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast22, 219–239 (2005). ArticleCAS Google Scholar
McClellan, A. J., Scott, M. D. & Frydman, J. Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell121, 739–748 (2005). ArticleCAS Google Scholar
Parran, D. K., Barker, A. & Ehrich, M. Effects of thimerosal on NGF signal transduction and cell death in neuroblastoma cells. Toxicol. Sci.86, 132–140 (2005). ArticleCAS Google Scholar
Ferreyra, R. G. & Frydman, J. Purification of the cytosolic chaperonin TRiC from bovine testis. Methods Mol. Biol.140, 153–160 (2000). CASPubMed Google Scholar