Mechanism of substrate recognition and transport by an amino acid antiporter (original) (raw)
References
Foster, J. W. Escherichia coli acid resistance: tales of an amateur acidophile. Nature Rev. Microbiol.2, 898–907 (2004) ArticleCAS Google Scholar
Iyer, R., Williams, C. & Miller, C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli . J. Bacteriol.185, 6556–6561 (2003) ArticleCAS Google Scholar
Gong, S., Richard, H. & Foster, J. W. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli . J. Bacteriol.185, 4402–4409 (2003) ArticleCAS Google Scholar
Jack, D. L., Paulsen, I. T. & Saier, M. H. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology146, 1797–1814 (2000) ArticleCAS Google Scholar
Casagrande, F. et al. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem.283, 33240–33248 (2008) ArticleCAS Google Scholar
Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science324, 1565–1568 (2009) ArticleADSCAS Google Scholar
Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature460, 1040–1043 (2009) ArticleADSCAS Google Scholar
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl–-dependent neurotransmitter transporters. Nature437, 215–223 (2005) ArticleADSCAS Google Scholar
Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature458, 47–52 (2009) ArticleADSCAS Google Scholar
Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science321, 810–814 (2008) ArticleADSCAS Google Scholar
Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science322, 709–713 (2008) ArticleADSCAS Google Scholar
Hersh, B. M., Farooq, F. T., Barstad, D. N., Blankenhorn, D. L. & Slonczewski, J. L. A glutamate-dependent acid resistance gene in Escherichia coli . J. Bacteriol.178, 3978–3981 (1996) ArticleCAS Google Scholar
Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. & Foster, J. W. Control of acid resistance in Escherichia coli . J. Bacteriol.181, 3525–3535 (1999) CASPubMedPubMed Central Google Scholar
Soksawatmaekhin, W., Kuraishi, A., Sakata, K., Kashiwagi, K. & Igarashi, K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli . Mol. Microbiol.51, 1401–1412 (2004) ArticleCAS Google Scholar
Soksawatmaekhin, W., Uemura, T., Fukiwake, N., Kashiwagi, K. & Igarashi, K. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J. Biol. Chem.281, 29213–29220 (2006) ArticleCAS Google Scholar
Kashiwagi, K. et al. Identification of the putrescine recognition site on polyamine transport protein PotE. J. Biol. Chem.275, 36007–36012 (2000) ArticleCAS Google Scholar
Kashiwagi, K., Miyamoto, S., Suzuki, F., Kobayashi, H. & Igarashi, K. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli . Proc. Natl Acad. Sci. USA89, 4529–4533 (1992) ArticleADSCAS Google Scholar
Kashiwagi, K., Shibuya, S., Tomitori, H., Kuraishi, A. & Igarashi, K. Excretion and uptake of putrescine by the PotE protein in Escherichia coli . J. Biol. Chem.272, 6318–6323 (1997) ArticleCAS Google Scholar
Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science325, 1010–1014 (2009) ArticleADSCAS Google Scholar
Fang, Y., Kolmakova-Partensky, L. & Miller, C. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem.282, 176–182 (2007) ArticleCAS Google Scholar
Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science322, 1655–1661 (2008) ArticleADSCAS Google Scholar
Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science317, 1390–1393 (2007) ArticleADSCAS Google Scholar
Singh, S. K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature448, 952–956 (2007) ArticleADSCAS Google Scholar
Forrest, L. R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl Acad. Sci. USA105, 10338–10343 (2008) ArticleADSCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) Article Google Scholar
DeLano, W. L. The PyMOL Molecular Graphics System. 〈http://www.pymol.org〉 (2002)
Cowtan, K. dm: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsl. Protein Crystallogr.31, 34–38 (1994) Google Scholar