The energetics of genome complexity (original) (raw)
Rokas, A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet.42, 235–251 (2008) ArticleCASPubMed Google Scholar
Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol.175, 413–429 (2001) ArticleCASPubMed Google Scholar
Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417, 141–147 (2002) ArticleADSPubMed Google Scholar
Pinevich, A. V. Intracytoplasmic membrane structures in bacteria. Endocyt. Cell Res.12, 9–40 (1997) Google Scholar
Robinson, N. P. & Bell, S. D. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc. Natl Acad. Sci. USA104, 5806–5811 (2007) ArticleADSCASPubMedPubMed Central Google Scholar
Mendell, J. E., Clements, K. D., Choat, J. H. & Angert, E. R. Extreme polyploidy in a large bacterium. Proc. Natl Acad. Sci. USA105, 6730–6734 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol.21, 319–346 (2005) ArticleCASPubMed Google Scholar
Lonhienne, T. G. A. et al. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus . Proc. Natl Acad. Sci. USA107, 12883–12888 (2010) ArticleADSCASPubMedPubMed Central Google Scholar
von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial symbionts contain γ-proteobacterial symbionts. Nature412, 433–436 (2001)A rare example of a prokaryote residing as an endosymbiont within a prokaryotic host, demonstrating that phagocytosis is not prerequisite to endosymbiosis. ArticleADSCASPubMed Google Scholar
Wujek, D. E. Intracellular bacteria in the blue-green-alga Pleurocapsa minor . Trans. Am. Microsc. Soc.98, 143–145 (1979) Article Google Scholar
Smith, J. M. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ.Press, 1995) Google Scholar
Cavalier-Smith, T. Predation and eukaryote cell origins: a coevolutionary perspective. Int. J. Biochem. Cell Biol.41, 307–322 (2009) ArticleCASPubMed Google Scholar
Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature431, 152–155 (2004) ArticleADSCASPubMed Google Scholar
Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimeric origin of eukaryotic genomes. Mol. Biol. Evol.24, 1752–1760 (2007) ArticleCASPubMed Google Scholar
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA105, 20356–20361 (2008)An important contribution, using a state of the art phylogenetic repertoire, to show that the host that acquired the mitochondrion was an archaebacterium (a prokaryote). ArticleADSCASPubMedPubMed Central Google Scholar
Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature426, 172–176 (2003) ArticleADSCASPubMed Google Scholar
van der Giezen, M. Hydrogenosomes and mitosomes: conservation and evolution of functions. J. Eukaryot. Microbiol.56, 221–231 (2009) ArticleCASPubMed Google Scholar
Tielens, A. G. M. et al. Mitochondria as we don’t know them. Trends Biochem. Sci.27, 564–572 (2002) ArticleCASPubMed Google Scholar
Harold, F. M. The Vital Force: A Study of Bioenergetics (Freeman, 1986) Google Scholar
Walker, J. C., Margulis, L. & Rambler, M. Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature264, 620–624 (1976) ArticleADS Google Scholar
Johnston, D. T., Wolfe-Simon, F., Pearson, A. & Knoll, A. H. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc. Natl Acad. Sci. USA106, 16925–16929 (2009) ArticleADSCASPubMedPubMed Central Google Scholar
Makarieva, A. M., Gorshkov, V. G. & Li, B. L. Energetics of the smallest: do bacteria breathe at the same rate as whales? Proc. R. Soc. Lond. B272, 2219–2224 (2005) Article Google Scholar
Fenchel, T. & Finlay, B. J. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol.9, 99–122 (1983) ArticleCASPubMed Google Scholar
Vellai, T. & Vida, G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc. R. Soc. Lond. B266, 1571–1577 (1999) ArticleCAS Google Scholar
Wagner, A. Energy constraints on the evolution of gene expression. Mol. Biol. Evol.22, 1365–1374 (2005) ArticleCASPubMed Google Scholar
Nilsson, M., Bülow, L. & Wahlund, K. Use of flow field-flow fractionation for the rapid quantitation of ribosome and ribosomal subunits in Escherichia coli at different protein production conditions. Biotechnol. Bioeng.54, 461–467 (1997) ArticleCASPubMed Google Scholar
Gray, M. W., Lang, B. F. & Burger, G. Mitochondria of protists. Annu. Rev. Genet.38, 477–524 (2004) ArticleCASPubMed Google Scholar
Daniels, E. W. & Breyer, E. P. Starvation effects on the ultrastructure of amoeba mitochondria. Z. Zellforsch.91, 159–169 (1968) ArticleCASPubMed Google Scholar
Aury, J.-M. et al. Global trends of whole genome duplications revealed by the ciliate Paramecium tetraurelia . Nature444, 171–178 (2006) ArticleADSCASPubMed Google Scholar
Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life (Oxford Univ. Press, 2005) Google Scholar
Koonin, E. V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol.5, R7 (2004)A seminal contribution that underscores the uniqueness of eukaryotic genomes with respect to their enriched protein content relative to prokaryotic forebears. ArticlePubMedPubMed Central Google Scholar
Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell140, 631–642 (2010) ArticleCASPubMed Google Scholar
Vellai, T., Takacs, K. & Vida, G. A new aspect to the origin and evolution of eukaryotes. J. Mol. Evol.46, 499–507 (1998) ArticleADSCASPubMed Google Scholar
Peterson, K. J., Dietrich, M. R. & McPeek, M. A. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays31, 736–747 (2009) ArticleCASPubMed Google Scholar
Bidle, K. D. & Falkowski, P. G. Cell death in planktonic, photosynthetic microorganisms. Nature Rev. Microbiol.2, 643–655 (2004) ArticleCAS Google Scholar
Allen, J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J. Theor. Biol.165, 609–631 (1993) ArticleCASPubMed Google Scholar
Allen, J. F. The function of genomes in bioenergetic organelles. Philos. Trans. R. Soc. Lond. B358, 19–38 (2003)Presents compelling bioenergetic reasons, necessary and sufficient, to account for the retention of genes involved in membrane-associated electron transport in mitochondria (and chloroplasts). ArticleCAS Google Scholar
Williams, R. S. Mitochondrial gene expression in mammalian striated muscle: evidence that variation in gene dosage is the major regulatory event. J. Biol. Chem.261, 12390–12394 (1986) CASPubMed Google Scholar
Williams, R. S. et al. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J. Biol. Chem.261, 376–380 (1986) CASPubMed Google Scholar
Shay, J. W., Pierce, D. J. & Werbin, H. Mitochondrial DNA copy number is proportional to total cell DNA under a variety of growth conditions. J. Biol. Chem.265, 14802–14807 (1990) CASPubMed Google Scholar
Rocher, C. et al. Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J. Bioenerg. Biomembr.40, 59–67 (2008)A systematic study demonstrating the linear dependence of metabolic rate on mtDNA copy number. ArticleCASPubMed Google Scholar
Moreno-Loshuertos, R. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nature Genet.38, 1261–1268 (2006)An important paper showing that free-radical signals modulate mtDNA copy number and the rate of ATP synthesis. ArticleCASPubMed Google Scholar
Bai, Y., Shakeley, R. M. & Attardi, G. Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria. Mol. Cell. Biol.20, 805–815 (2000)A seminal contribution, showing that the rate of transcription of a mtDNA-encoded respiratory subunit controls the overall rate of respiration. ArticleCASPubMedPubMed Central Google Scholar
Chomyn, A. Mitochondrial genetic control of assembly and function of complex I in mammalian cells. J. Bioenerg. Biomembr.33, 251–257 (2001) ArticleCASPubMed Google Scholar
Piruat, J. I. & López-Barneo, J. Oxygen tension regulates mitochondrial DNA-encoded complex I gene expression. J. Biol. Chem.280, 42676–42684 (2005) ArticleCASPubMed Google Scholar
Shimizu, M. et al. Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry. Proc. Natl Acad. Sci. USA107, 10760–10764 (2010) ArticleADSCASPubMedPubMed Central Google Scholar
Schulz, H. N. The genus Thiomargarita . Prokaryotes6, 1156–1163 (2006) Article Google Scholar
Timmis, J. N. et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet.5, 123–135 (2004) ArticleCASPubMed Google Scholar
Lane, C. E. & Archibald, J. M. The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol. Evol.23, 268–275 (2008) ArticlePubMed Google Scholar
Ebersbach, G. & Gerdes, K. Plasmid segregation mechanisms. Annu. Rev. Genet.39, 453–479 (2005) ArticleCASPubMed Google Scholar
Brighouse, A., Dacks, J. B. & Field, M. C. Rab protein evolution and the history of the eukaryotic endomembrane system. Cell. Mol. Life Sci.67, 3449–3465 (2010) ArticleCASPubMedPubMed Central Google Scholar
Martin, W. & Koonin, E. V. Introns and the origin of nucleus–cytosol compartmentalization. Nature440, 41–45 (2006) ArticleADSCASPubMed Google Scholar
Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science312, 1011–1014 (2006) ArticleADSCASPubMed Google Scholar
Schulz, H. N. & de Beer, D. Uptake rates of oxygen and sulphide measured with individual Thiomargarita namibiensis cells by using microelectrodes. Appl. Environ. Microbiol.68, 5746–5749 (2002) ArticleCASPubMedPubMed Central Google Scholar
Parfrey, L. W., Lahr, D. J. G. & Katz, L. A. The dynamic nature of eukaryotic genomes. Mol. Biol. Evol.25, 787–794 (2008) ArticleCASPubMed Google Scholar