Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen (original) (raw)
Blanchard, H., Yu, X., Coulson, B. S. & von Itzstein, M. Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J. Mol. Biol.367, 1215–1226 (2007) ArticleCASPubMed Google Scholar
Dormitzer, P. R. et al. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J. Virol.76, 10512–10517 (2002) ArticleCASPubMedPubMed Central Google Scholar
Haselhorst, T. et al. Sialic acid dependence in rotavirus host cell invasion. Nature Chem. Biol.5, 91–93 (2009) ArticleCAS Google Scholar
Lopez, S. & Arias, C. F. Early steps in rotavirus cell entry. Curr. Top. Microbiol. Immunol.309, 39–66 (2006) CASPubMed Google Scholar
Settembre, E. C., Chen, J. Z., Dormitzer, P. R., Grigorieff, N. & Harrison, S. C. Atomic model of an infectious rotavirus particle. EMBO J.30, 408–416 (2011) ArticleCASPubMed Google Scholar
Dormitzer, P. R., Sun, Z. Y., Wagner, G. & Harrison, S. C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J.21, 885–897 (2002) ArticleCASPubMedPubMed Central Google Scholar
Kraschnefski, M. J. et al. Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein. Glycobiology19, 194–200 (2009) ArticleCASPubMed Google Scholar
Marionneau, S. et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie83, 565–573 (2001) ArticleCASPubMed Google Scholar
Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science279, 373–377 (1998) ArticleCASADSPubMed Google Scholar
Glass, R. I., Parashar, U. D. & Estes, M. K. Norovirus gastroenteritis. N. Engl. J. Med.361, 1776–1785 (2009) ArticleCASPubMed Google Scholar
Matthijnssens, J. et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol.156, 1397–1413 (2011) ArticleCASPubMedPubMed Central Google Scholar
Monnier, N. et al. High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain. J. Virol.80, 1513–1523 (2006) ArticleCASPubMedPubMed Central Google Scholar
Gerna, G. et al. Identification of a new VP4 serotype of human rotaviruses. Virology200, 66–71 (1994) ArticleCASPubMed Google Scholar
Ciarlet, M. & Estes, M. K. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J. Gen. Virol.80, 943–948 (1999) ArticleCASPubMed Google Scholar
Chitambar, S. D., Arora, R., Kolpe, A. B., Yadav, M. M. & Raut, C. G. Molecular characterization of unusual bovine group A rotavirus G8P[14] strains identified in western India: emergence of P[14] genotype. Vet. Microbiol.148, 384–388 (2011) ArticleCASPubMed Google Scholar
Fukai, K., Saito, T., Inoue, K. & Sato, M. Molecular characterization of novel P[14],G8 bovine group A rotavirus, Sun9, isolated in Japan. Virus Res.105, 101–106 (2004) ArticleCASPubMed Google Scholar
Matthijnssens, J. et al. Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J. Virol.83, 2917–2929 (2009) ArticleCASPubMedPubMed Central Google Scholar
Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol.355, 1143–1155 (2006) ArticleCASPubMed Google Scholar
Neu, U. et al. Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe8, 309–319 (2010) ArticleCASPubMedPubMed Central Google Scholar
Midgley, S. E., Hjulsager, C. K., Larsen, L. E., Falkenhorst, G. & Bottiger, B. Suspected zoonotic transmission of rotavirus group A in Danish adults. Epidemiol. Infect. 10.1017/S0950268811001981 (27 September 2011)
Parashar, U. D., Gibson, C. J., Bresse, J. S. & Glass, R. I. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis.12, 304–306 (2006) ArticlePubMedPubMed Central Google Scholar
Estes, M. K. & Kapikian, A. Z. in Fields Virology Vol. 2 (eds Knipe, D. M. & Howley, P. M. ) 1917–1974 (Lippincott Williams & Wilkins, 2007) Google Scholar
Angel, J., Franco, M. A. & Greenberg, H. B. Rotavirus vaccines: recent developments and future considerations. Nature Rev. Microbiol.5, 529–539 (2007) ArticleCAS Google Scholar
Gentsch, J. R. et al. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J. Infect. Dis.192 (Suppl 1). S146–S159 (2005) ArticlePubMed Google Scholar
Guillon, P. et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology18, 1085–1093 (2008) ArticleCASPubMed Google Scholar
Pflugrath, J. W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D55, 1718–1725 (1999) ArticleCASPubMed Google Scholar
Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol.374, 229–244 (2003) ArticleCASPubMed Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010) ArticleCASPubMedPubMed Central Google Scholar
Bohne, A., Lang, E. & von der Lieth, C. W. SWEET - WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics15, 767–768 (1999) ArticleCASPubMed Google Scholar
Lütteke, T., Frank, M. & von der Lieth, C. W. Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res.33, D242–D246 (2005) ArticlePubMed Google Scholar
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng.8, 127–134 (1995) ArticleCASPubMed Google Scholar
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) ArticleCASPubMed Google Scholar
Smith, D. F., Song, X. & Cummings, R. D. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol.480, 417–444 (2010) ArticleCASPubMed Google Scholar
Haselhorst, T. et al. Sialic acid dependence in rotavirus host cell invasion. Nature Chem. Biol.5, 91–93 (2009) ArticleCAS Google Scholar
Guillon, P. et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology18, 1085–1093 (2008) ArticleCASPubMed Google Scholar
Hutson, A. M., Atmar, R. L., Marcus, D. M. & Estes, M. K. Norwalk virus-like particle hemagglutination by binding to H histo-blood group antigens. J. Virol.77, 405–415 (2003) ArticleCASPubMedPubMed Central Google Scholar