MicroRNA-34a regulates cardiac ageing and function (original) (raw)

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Data are available at the National Center for Biotechnology Information Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE43556.

Change history

The first Supplementary Information file has been replaced with an updated version.

References

  1. Lakatta, E. G. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail. Rev. 7, 29–49 (2002)
    Article Google Scholar
  2. Wellenius, G. A. & Mittleman, M. A. Disparities in myocardial infarction case fatality rates among the elderly: the 20-year Medicare experience. Am. Heart J. 156, 483–490 (2008)
    Article Google Scholar
  3. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011)
    Google Scholar
  4. Dimmeler, S. & Nicotera, P. MicroRNAs in age-related diseases. EMBO Mol. Med.. http://dx.doi.org/10.1002/emmm.201201986 (22 January 2013)
  5. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008)
    Article CAS ADS Google Scholar
  6. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008)
    Article CAS ADS Google Scholar
  7. Christoffersen, N. R. et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 17, 236–245 (2010)
    Article CAS Google Scholar
  8. Boon, R. A. et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ. Res. 109, 1115–1119 (2011)
    Article CAS Google Scholar
  9. van Almen, G. C. et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10, 769–779 (2011)
    Article CAS Google Scholar
  10. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007)
    Article CAS ADS Google Scholar
  11. Hermeking, H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nature Rev. Cancer 12, 613–626 (2012)
    Article CAS Google Scholar
  12. Krützfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005)
    Article ADS Google Scholar
  13. Ito, T., Yagi, S. & Yamakuchi, M. MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 398, 735–740 (2010)
    Article CAS Google Scholar
  14. Zhao, T., Li, J. & Chen, A. F. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 299, E110–E116 (2010)
    Article CAS Google Scholar
  15. Xu, Q. et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J. Am. Coll. Cardiol. 59, 2107–2117 (2012)
    Article CAS Google Scholar
  16. De Leon, G., Sherry, T. C. & Krucher, N. A. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis. Cancer Biol. Ther. 7, 833–841 (2008)
    Article CAS Google Scholar
  17. Kim, H. et al. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Struct. Mol. Biol. 16, 372–379 (2009)
    Article CAS Google Scholar
  18. Landsverk, H. B. et al. The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Rep. 11, 868–875 (2010)
    Article CAS Google Scholar
  19. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999)
    Article CAS Google Scholar
  20. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011)
    Article CAS ADS Google Scholar
  21. Shukla, P. C. et al. BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nature Commun. 2, 593 (2011)
    Article ADS Google Scholar
  22. Oh, H. et al. Telomere attrition and Chk2 activation in human heart failure. Proc. Natl Acad. Sci. USA 100, 5378–5383 (2003)
    Article CAS ADS Google Scholar
  23. Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008)
    Article CAS ADS Google Scholar
  24. Hsu, C. P. et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122, 2170–2182 (2010)
    Article Google Scholar
  25. Bernardo, B. C. et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA 109, 17615–17620 (2012)
    Article CAS ADS Google Scholar
  26. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009)
    Article CAS ADS Google Scholar
  27. Cheng, H. L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA 100, 10794–10799 (2003)
    Article CAS ADS Google Scholar
  28. Vogel, H., Lim, D.-S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770–10775 (1999)
    Article CAS ADS Google Scholar
  29. Koyanagi, M., Brandes, R. P., Haendeler, J., Zeiher, A. M. & Dimmeler, S. Cell-to-Cell Connection of Endothelial Progenitor Cells With Cardiac Myocytes by Nanotubes: A Novel Mechanism for Cell Fate Changes? Circ. Res. 96, 1039–1041 (2005)
    Article CAS Google Scholar
  30. Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375 (2003)
    Article CAS Google Scholar
  31. Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002)
    Article Google Scholar
  32. Poon, S. S. S., Martens, U. M., Ward, R. K. & Lansdorp, P. M. Telomere length measurements using digital fluorescence microscopy. Cytometry 36, 267–278 (1999)
    Article CAS Google Scholar
  33. Takagawa, J. et al. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J. Appl. Physiol. 102, 2104–2111 (2007)
    Article Google Scholar
  34. Boon, R. A. et al. Kruppel-like factor 2 improves neovascularization capacity of aged proangiogenic cells. Eur. Heart J. 32, 371–377 (2011)
    Article CAS Google Scholar
  35. Schinkel, S. et al. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum. Gene Ther. 23, 566–575 (2012)
    Article CAS Google Scholar
  36. Hauswirth, W. W., Lewin, A. S., Zolotukhin, S. & Muzyczka, N. Production and purification of recombinant adeno-associated virus. Methods Enzymol. 316, 743–761 (2000)
    Article CAS Google Scholar

Download references

Acknowledgements

We thank M. Muhly-Reinholz, A. Knau, B. Zimmermann, N. Reinfeld and F. Gehring for technical assistance, F. W. Alt for providing SIRT1 mutant mice and D. Sassoon and G. Marazzi for conceptual advice. R.A.B. was supported by the Netherlands Organization for Scientific Research (NWO) and K.I. by a Research Grant Abroad of the Japanese Heart Foundation. This study was supported by a start-(Exc 147-1) to R.A.B., by the European Research Council (Advanced grant “Angiomirs”) and the German Center for Cardiovascular Research DZHK and the European Union FP7 project Endostem (Grant no. 241440) to S.D. H.A.K. and O.J.M. are supported by the German Centre for Cardiovascular Research (DZHK) and by the German Ministry of Education and Research (BMBF). M.P. is supported by the Max Planck Society, the Fondation Leducq (ARTEMIS) and an ERC Starting Grant (ANGIOMET). H.H. is supported by the DFG, the Deutsche Krebshilfe and the Rudolf-Bartling-Stiftung.

Author information

Author notes

  1. Michael Potente
    Present address: Present address: Max-Planck-Institute for Heart and Lung Reseach, 61231 Bad Nauheim, Germany.,
  2. Reinier A. Boon and Kazuma Iekushi: These authors contributed equally to this work.

Authors and Affiliations

  1. Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany,
    Reinier A. Boon, Kazuma Iekushi, Timon Seeger, Ariane Fischer, Susanne Heydt, David Kaluza, Karine Tréguer, Guillaume Carmona, Angelika Bonauer, Michael Potente & Stefanie Dimmeler
  2. Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany,
    Stefanie Lechner & Heiko Hermeking
  3. Department of Cardiology, Internal Medicine III, Goethe University, 60590 Frankfurt, Germany,
    Timon Seeger, Zenawit Girmatsion, Peter Biliczki, Joachim R. Ehrlich, Michael Potente & Andreas M. Zeiher
  4. Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081BT Amsterdam, the Netherlands,
    Anton J. G. Horrevoets
  5. Myology Group, UMR S787 INSERM, Université Pierre et Marie Curie Paris VI, Institut de Myologie, Pitie-Salpétrière, Paris Cedex, France,
    Nathalie Didier
  6. Internal Medicine III, Heidelberg Universiy Hospital, 69120 Heidelberg, Germany,
    Hugo A. Katus & Oliver J. Müller
  7. German Center for Cardiovascular Research DZHK, 13347 Berlin, Germany,
    Hugo A. Katus, Oliver J. Müller, Andreas M. Zeiher & Stefanie Dimmeler

Authors

  1. Reinier A. Boon
    You can also search for this author inPubMed Google Scholar
  2. Kazuma Iekushi
    You can also search for this author inPubMed Google Scholar
  3. Stefanie Lechner
    You can also search for this author inPubMed Google Scholar
  4. Timon Seeger
    You can also search for this author inPubMed Google Scholar
  5. Ariane Fischer
    You can also search for this author inPubMed Google Scholar
  6. Susanne Heydt
    You can also search for this author inPubMed Google Scholar
  7. David Kaluza
    You can also search for this author inPubMed Google Scholar
  8. Karine Tréguer
    You can also search for this author inPubMed Google Scholar
  9. Guillaume Carmona
    You can also search for this author inPubMed Google Scholar
  10. Angelika Bonauer
    You can also search for this author inPubMed Google Scholar
  11. Anton J. G. Horrevoets
    You can also search for this author inPubMed Google Scholar
  12. Nathalie Didier
    You can also search for this author inPubMed Google Scholar
  13. Zenawit Girmatsion
    You can also search for this author inPubMed Google Scholar
  14. Peter Biliczki
    You can also search for this author inPubMed Google Scholar
  15. Joachim R. Ehrlich
    You can also search for this author inPubMed Google Scholar
  16. Hugo A. Katus
    You can also search for this author inPubMed Google Scholar
  17. Oliver J. Müller
    You can also search for this author inPubMed Google Scholar
  18. Michael Potente
    You can also search for this author inPubMed Google Scholar
  19. Andreas M. Zeiher
    You can also search for this author inPubMed Google Scholar
  20. Heiko Hermeking
    You can also search for this author inPubMed Google Scholar
  21. Stefanie Dimmeler
    You can also search for this author inPubMed Google Scholar

Contributions

R.A.B. designed and performed experiments, analysed data and wrote the manuscript. S.L. and H.H. generated the _miR-34a_−/− mice. K.I., T.S., A.F., S.H., D.K., K.T., G.C. and A.B. performed experiments and analysed data. A.J.G.H. analysed microarray data. N.D., Z.G., P.B., J.R.E. and M.P. provided essential materials. H.A.K. and O.J.M. developed the AAV vectors. A.M.Z. wrote the manuscript. S.D. designed experiments, analysed data and wrote the manuscript. All authors have proofread the manuscript.

Corresponding author

Correspondence toStefanie Dimmeler.

Ethics declarations

Competing interests

R.A.B., S.D. and A.M.Z. applied for a patent regarding this work.

Supplementary information

PowerPoint slides

Rights and permissions

About this article

Cite this article

Boon, R., Iekushi, K., Lechner, S. et al. MicroRNA-34a regulates cardiac ageing and function.Nature 495, 107–110 (2013). https://doi.org/10.1038/nature11919

Download citation