Structural visualization of key steps in human transcription initiation (original) (raw)
Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem.255, 11992–11996 (1980) CASPubMed Google Scholar
Roeder, R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci.21, 327–335 (1996) ArticleCASPubMed Google Scholar
Goodrich, J. A., Cutler, G. & Tjian, R. Contacts in context: promoter specificity and macromolecular interactions in transcription. Cell84, 825–830 (1996) ArticleCASPubMed Google Scholar
Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys.37, 337–352 (2008) ArticleCASPubMed Google Scholar
Grünberg, S., Warfield, L. & Hahn, S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nature Struct. Mol. Biol.19, 788–796 (2012) ArticleCAS Google Scholar
Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol.41, 105–178 (2006) ArticleCASPubMed Google Scholar
Andel, F., III, Ladurner, A. G., Inouye, C., Tjian, R. & Nogales, E. Three-dimensional structure of the human TFIID-IIA-IIB complex. Science286, 2153–2156 (1999) ArticleCASPubMed Google Scholar
Chung, W. H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell12, 1003–1013 (2003) ArticleCASPubMed Google Scholar
Bernecky, C., Grob, P., Ebmeier, C. C., Nogales, E. & Taatjes, D. J. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol.9, e1000603 (2011) ArticleCASPubMedPubMed Central Google Scholar
Liu, X., Bushnell, D. A., Wang, D., Calero, G. & Kornberg, R. D. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science327, 206–209 (2010) ArticleADSCASPubMed Google Scholar
Kostrewa, D. et al. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature462, 323–330 (2009) ArticleADSCASPubMed Google Scholar
Bleichenbacher, M., Tan, S. & Richmond, T. J. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J. Mol. Biol.332, 783–793 (2003) ArticleCASPubMed Google Scholar
Sainsbury, S., Niesser, J. & Cramer, P. Structure and function of the initially transcribing RNA polymerase II–TFIIB complex. Nature493, 437–440 (2013) ArticleADSCASPubMed Google Scholar
Gaiser, F., Tan, S. & Richmond, T. J. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 Å resolution. J. Mol. Biol.302, 1119–1127 (2000) ArticleCASPubMed Google Scholar
Chen, Z. A. et al. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J.29, 717–726 (2010) ArticleCASPubMedPubMed Central Google Scholar
Eichner, J., Chen, H. T., Warfield, L. & Hahn, S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J.29, 706–716 (2010) ArticleCASPubMed Google Scholar
Robert, F., Forget, D., Li, J., Greenblatt, J. & Coulombe, B. Localization of subunits of transcription factors IIE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J. Biol. Chem.271, 8517–8520 (1996) ArticleCASPubMed Google Scholar
Tyree, C. M. et al. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev.7, 1254–1265 (1993) ArticleCASPubMed Google Scholar
Tan, S., Garrett, K. P., Conaway, R. C. & Conaway, J. W. Cryptic DNA-binding domain in the C terminus of RNA polymerase II general transcription factor RAP30. Proc. Natl Acad. Sci. USA91, 9808–9812 (1994) ArticleADSCASPubMedPubMed Central Google Scholar
Ghazy, M. A., Brodie, S. A., Ammerman, M. L., Ziegler, L. M. & Ponticelli, A. S. Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol. Cell. Biol.24, 10975–10985 (2004) ArticleCASPubMedPubMed Central Google Scholar
Yan, Q., Moreland, R. J., Conaway, J. W. & Conaway, R. C. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J. Biol. Chem.274, 35668–35675 (1999) ArticleCASPubMed Google Scholar
Forget, D. et al. RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box. Proc. Natl Acad. Sci. USA94, 7150–7155 (1997) ArticleADSCASPubMedPubMed Central Google Scholar
Orlicky, S. M., Tran, P. T., Sayre, M. H. & Edwards, A. M. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem.276, 10097–10102 (2001) ArticleCASPubMed Google Scholar
Grohmann, D. et al. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell43, 263–274 (2011) ArticleCASPubMedPubMed Central Google Scholar
Buratowski, S., Sopta, M., Greenblatt, J. & Sharp, P. A. RNA polymerase II-associated proteins are required for a DNA conformation change in the transcription initiation complex. Proc. Natl Acad. Sci. USA88, 7509–7513 (1991) ArticleADSCASPubMedPubMed Central Google Scholar
Giardina, C. & Lis, J. T. DNA melting on yeast RNA polymerase II promoters. Science261, 759–762 (1993) ArticleADSCASPubMed Google Scholar
Chen, H. T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell119, 169–180 (2004) ArticleCASPubMed Google Scholar
Freire-Picos, M. A., Krishnamurthy, S., Sun, Z. W. & Hampsey, M. Evidence that the Tfg1/Tfg2 dimer interface of TFIIF lies near the active center of the RNA polymerase II initiation complex. Nucleic Acids Res.33, 5045–5052 (2005) ArticleCASPubMedPubMed Central Google Scholar
Sun, Z. W. & Hampsey, M. Identification of the gene (SSU71/TFG1) encoding the largest subunit of transcription factor TFIIF as a suppressor of a TFIIB mutation in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA92, 3127–3131 (1995) ArticleADSCASPubMedPubMed Central Google Scholar
Fernández-Tornero, C. et al. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J.29, 3762–3772 (2010) ArticlePubMedPubMed CentralCAS Google Scholar
Cheung, A. C. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature471, 249–253 (2011) ArticleADSCASPubMed Google Scholar
Goodrich, J. A. & Tjian, R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell77, 145–156 (1994) ArticleCASPubMed Google Scholar
Conaway, R. C. & Conaway, J. W. General initiation factors for RNA polymerase II. Annu. Rev. Biochem.62, 161–190 (1993) ArticleCASPubMed Google Scholar
Andrecka, J. et al. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res.37, 5803–5809 (2009) ArticleCASPubMedPubMed Central Google Scholar
Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science292, 1876–1882 (2001) ArticleADSCASPubMed Google Scholar
Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell133, 789–800 (2008) ArticleCASPubMedPubMed Central Google Scholar
Kim, T. K., Ebright, R. H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science288, 1418–1421 (2000) ArticleADSCASPubMed Google Scholar
Revyakin, A. et al. Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev.26, 1691–1702 (2012) ArticleCASPubMedPubMed Central Google Scholar
Juven-Gershon, T., Cheng, S. & Kadonaga, J. T. Rational design of a super core promoter that enhances gene expression. Nature Methods3, 917–922 (2006) ArticleCASPubMed Google Scholar
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol.151, 41–60 (2005) ArticleCASPubMed Google Scholar
Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol.166, 95–102 (2009) ArticleCASPubMedPubMed Central Google Scholar
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol.157, 38–46 (2007) ArticleCASPubMed Google Scholar
Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol.157, 47–55 (2007) ArticleCASPubMed Google Scholar
Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol.157, 281–287 (2007) ArticleCASPubMed Google Scholar
Groft, C. M., Uljon, S. N., Wang, R. & Werner, M. H. Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc. Natl Acad. Sci. USA95, 9117–9122 (1998) ArticleADSCASPubMedPubMed Central Google Scholar
Chen, H. T., Warfield, L. & Hahn, S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nature Struct. Mol. Biol.14, 696–703 (2007) ArticleCAS Google Scholar
Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev.23, 439–451 (2009) ArticleCASPubMedPubMed Central Google Scholar
Pal, M., Ponticelli, A. S. & Luse, D. S. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol. Cell19, 101–110 (2005) ArticleCASPubMed Google Scholar
Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol.166, 205–213 (2009) ArticleCASPubMedPubMed Central Google Scholar
Mallick, S. P., Carragher, B., Potter, C. S. & Kriegman, D. J. ACE: automated CTF estimation. Ultramicroscopy104, 8–29 (2005) ArticleCASPubMed Google Scholar
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol.142, 334–347 (2003) ArticlePubMed Google Scholar
Sorzano, C. O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol.148, 194–204 (2004) ArticleCASPubMed Google Scholar
van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol.116, 17–24 (1996) ArticleCASPubMed Google Scholar
Kostek, S. A. et al. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure14, 1691–1700 (2006) ArticleCASPubMed Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996) ArticleCASPubMed Google Scholar
Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol.157, 3–18 (2007) ArticleCASPubMed Google Scholar
Lu, X. J. & Olson, W. K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols3, 1213–1227 (2008) ArticleCASPubMedPubMed Central Google Scholar