Onset of deglacial warming in West Antarctica driven by local orbital forcing (original) (raw)

References

  1. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geosci. 1, 787–792 (2008)
    Article ADS CAS Google Scholar
  2. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007)
    Article ADS CAS Google Scholar
  3. Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)
    Article ADS CAS Google Scholar
  4. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)
    Article ADS CAS Google Scholar
  5. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)
    Article ADS CAS Google Scholar
  6. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004)
  7. EPICA. Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006)
  8. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013)
    Article ADS CAS Google Scholar
  9. Nicolas, J. P. & Bromwich, D. H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 24, 49–67 (2011)
    Article ADS Google Scholar
  10. Noone, D. & Simmonds, I. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res. 109, D07105 (2004)
    Article ADS Google Scholar
  11. Steig, E. J. et al. in The West Antarctic Ice Sheet: Behavior and Environment Vol. 77 (eds Alley, R. & Bindschadler, R. ) 75–90 (American Geophysical Union, 2001)
  12. Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008)
    Article Google Scholar
  13. Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geosci. 6, 372–375 (2013)
    Article ADS CAS Google Scholar
  14. Stenni, B. et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geosci. 4, 46–49 (2011)
    Article ADS CAS Google Scholar
  15. Hammer, C. U., Clausen, H. B. & Langway, C. C. 50,000 years of recorded global volcanism. Clim. Change 35, 1–15 (1997)
    Article CAS Google Scholar
  16. Schwander, J. et al. A tentative chronology for the EPICA Dome Concordia ice core. Geophys. Res. Lett. 28, 4243–4246 (2001)
    Article ADS Google Scholar
  17. Wolff, E. W., Rankin, A. M. & Rothlisberger, R. An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett. 30, 2158 (2003)
    Article ADS Google Scholar
  18. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nature Geosci. 5, 872–875 (2012)
    Article ADS CAS Google Scholar
  19. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009)
    Article ADS CAS Google Scholar
  20. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)
    Article ADS CAS Google Scholar
  21. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006)
    Article ADS Google Scholar
  22. Lee, S. Y., Chiang, J. C. H., Matsumoto, K. & Tokos, K. S. Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: modeling perspective and paleoceanographic implications. Paleoceanography 26, PA1214 (2011)
    Article ADS Google Scholar
  23. Collins, L. G., Pike, J., Allen, C. S. & Hodgson, D. A. High-resolution reconstruction of southwest Atlantic sea-ice and its role in the carbon cycle during marine isotope stages 3 and 2. Paleoceanography 27, PA3217 (2012)
    Article ADS Google Scholar
  24. Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Report No. 218 90 (Max-Planck-Institut für Meteorologie, 1996)
  25. Braconnot, P. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Clim. Past 3, 261–277 (2007)
    Article Google Scholar
  26. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)
    Article ADS CAS Google Scholar
  27. Pedro, J. B. et al. The last deglaciation: timing the bipolar seesaw. Clim. Past 7, 671–683 (2011)
    Article Google Scholar
  28. Brook, E. J. et al. Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quat. Sci. Rev. 24, 1333–1343 (2005)
    Article ADS Google Scholar
  29. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001)
    Article ADS CAS Google Scholar
  30. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)
    Article ADS CAS Google Scholar
  31. Lemieux-Dudon, B. et al. Consistent dating for Antarctic and Greenland ice cores. Quat. Sci. Rev. 29, 8–20 (2010)
    Article ADS Google Scholar
  32. Crosson, E. R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B 92, 403–408 (2008)
    Article ADS CAS Google Scholar
  33. Dahl-Jensen, D., Gundestrup, N., Gogineni, S. P. & Miller, H. Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol. 37, 207–212 (2003)
    Article ADS Google Scholar
  34. Dansgaard, W. & Johnsen, S. J. A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol. 8, 215–223 (1969)
    Article ADS Google Scholar
  35. Sigl, M. et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J. Geophys. Res. 18, 1151–1169 (2013)
    Google Scholar
  36. Herron, M. M. & Langway, C. C. Firn densification: an empirical model. J. Glaciol. 25, 373–385 (1980)
    Article ADS Google Scholar
  37. Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R. & Taylor, K. Multidecadal variability of atmospheric methane, 1000-1800 CE. J. Geophys. Res. 116, G02007 (2011)
    Article ADS Google Scholar
  38. Huber, C. et al. Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth Planet. Sci. Lett. 243, 61–73 (2006)
    Article ADS CAS Google Scholar
  39. Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J. M. & Grachev, A. M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quat. Sci. Rev. 26, 1212–1222 (2007)
    Article ADS Google Scholar
  40. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998)
    Article ADS CAS Google Scholar
  41. Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707 (2009)
    Article ADS Google Scholar
  42. Cheng, H. et al. Ice age terminations. Science 326, 248–252 (2009)
    Article ADS CAS Google Scholar
  43. Ruth, U. et al. “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150,000 years. Clim. Past 3, 475–484 (2007)
    Article Google Scholar
  44. Bisiaux, M. M. et al. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmos. Chem. Phys. 12, 4107–4115 (2012)
    Article ADS CAS Google Scholar
  45. McConnell, J. R. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 36, 7–11 (2002)
    Article ADS CAS Google Scholar
  46. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317, 1381–1384 (2007)
    Article ADS CAS Google Scholar
  47. Pasteris, D. R., McConnell, J. R. & Edwards, R. High-resolution, continuous method for measurement of acidity in ice cores. Environ. Sci. Technol. 46, 1659–1666 (2012)
    Article ADS CAS Google Scholar
  48. Röthlisberger, R., Crosta, X., Abram, N. J., Armand, L. & Wolff, E. W. Potential and limitations of marine and ice core sea ice proxies: an example from the Indian Ocean sector. Quat. Sci. Rev. 29, 296–302 (2010)
    Article ADS Google Scholar
  49. Alley, R. B. et al. Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates. J. Glaciol. 41, 503–514 (1995)
    Article ADS Google Scholar
  50. Dlugokencky, E. J. et al. Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J. Geophys. Res. 110, D18306 (2005)
    Article ADS Google Scholar
  51. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1, 80–83 (1945)
    Article Google Scholar
  52. Mauget, S. A. Intra- to multidecadal climate variability over the continental United States: 1932-99. J. Clim. 16, 2215–2231 (2003)
    Article ADS Google Scholar
  53. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999)
    Article ADS Google Scholar
  54. Hoffmann, G., Werner, M. & Heimann, M. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J. Geophys. Res. 103, 16871–16896 (1998)
    Article ADS CAS Google Scholar
  55. Ding, Q. H., Steig, E. J., Battisti, D. S. & Kuttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011)
    Article ADS CAS Google Scholar

Download references

Acknowledgements

This work was supported by US National Science Foundation (NSF). The authors appreciate the support of the WAIS Divide Science Coordination Office (M. Twickler and J. Souney) for the collection and distribution of the WAIS Divide ice core; Ice Drilling and Design and Operations (K. Dahnert) for drilling; the National Ice Core Laboratory (B. Bencivengo) for curating the core; Raytheon Polar Services (M. Kippenhan) for logistics support in Antarctica; and the 109th New York Air National Guard for airlift in Antarctica. We also thank C. Buizert and S. Marcott for discussions. The following individual NSF grants supported this work: 0944197 (E.D.W., H. Conway); 1043092, 0537930 (E.J.S.); 0944348, 0944191, 0440817, 0440819, 0230396 (K.C.T.); 0538427, 0839093 (J.R.M.); 1043518 (E.J.B.); 1043500 (T.S.); 05379853, 1043167 (J.W.C.W.); 1043528, 0539578 (R.B.A.); 0539232 (K.M.C., G.D.C.); 1103403 (R.L.E., H. Conway); 0739780 (R.E.); 0637211 (G.H.); 0538553, 0839066 (J.C.-D.), 0538657, 1043421 (J.P.S.); 1043313 (M.K.S.); 0801490 (G.J.W). Other support came from a NASA NESSF award (T.J.F.), the USGS Climate and Land Use Change Program (G.D.C., J.J.F.), the National Natural Science Foundation of China (41230524 to H. Cheng) and the Singapore National Research Foundation (NRFF2011-08 to X.W.).

Author information

Author notes

  1. Affiliations for participants:

Authors and Affiliations

  1. Department of Earth and Space Sciences, University of Washington, Seattle, 98195, Washington, USA
    T. J. Fudge, Eric J. Steig, Bradley R. Markle, Spruce W. Schoenemann, Qinghua Ding, Howard Conway, Peter Neff, Andrew J. Schauer & Edwin D. Waddington
  2. Quaternary Research Center, University of Washington, Seattle, 98195, Washington, USA
    Eric J. Steig & Qinghua Ding
  3. Desert Research Institute, Nevada System of Higher Education, Reno, 89512, Nevada, USA
    Kendrick C. Taylor, Joseph R. McConnell, Olivia J. Maselli, Kenneth C. McGwire & Michael Sigl
  4. College of Earth, Ocean and Atmospheric Sciences Oregon State University, Corvallis, 97331, Oregon, USA
    Edward J. Brook, Jon S. Edwards, James E. Lee & Logan E. Mitchell
  5. Earth and Environmental Systems Institute, Pennsylvania State University, University Park, 16802, Pennsylvania, USA
    Todd Sowers, Richard B. Alley, John M. Fegyveresi & Donald E. Voigt
  6. Department of Geological Sciences and Department of Environmental Studies, Boulder, 80309, Colorado, USA
    James W. C. White
  7. INSTAAR, University of Colorado, Boulder, 80309, Colorado, USA
    James W. C. White & Bruce H. Vaughn
  8. Department of Geosciences, Pennsylvania State University, University Park, 16802, Pennsylvania, USA
    Richard B. Alley, John M. Fegyveresi & Donald E. Voigt
  9. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, 710049, China
    Hai Cheng
  10. Department of Earth Sciences, University of Minnesota, Minneapolis, 55455, Minnesota, USA
    Hai Cheng & R. Lawrence Edwards
  11. US Geological Survey, Geosciences and Environmental Change Science Center, Lakewood, 80225, Colorado, USA
    Gary D. Clow
  12. Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, USA.,
    Jihong Cole-Dai & David Ferris
  13. Department of Geography, University of California-Berkeley, Berkeley, 94720, USA
    Kurt M. Cuffey
  14. Department of Imaging and Applied Physics, Curtin University, Perth, 6102, Western Australia, Australia
    Ross Edwards
  15. US Geological Survey, Denver, 80225, Colorado, USA
    Joan J. Fitzpatrick
  16. Ice Drilling Design and Operations, Space Science Engineering Center, University of Wisconsin-Madison, Madison, 53706, Wisconsin, USA
    Jay Johnson & Nicolai Mortensen
  17. US Geologic Survey, National Ice Core Laboratory, Denver, 80225, Colorado, USA
    Geoffrey Hargreaves
  18. EMECH Designs, Brooklyn, 53521, Wisconsin, USA
    William Mason
  19. Antarctic Research Centre, Victoria University of Wellington, Wellington, 6012, New Zealand
    Peter Neff
  20. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92037, California, USA
    Anais J. Orsi & Jeffrey P. Severinghaus
  21. Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark.,
    Trevor J. Popp
  22. Department of Geology and Physics, Lake Superior State University, Sault Ste Marie, Michigan 49783, USA.,
    Matthew K. Spencer
  23. Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798.,
    Xianfeng Wang
  24. Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.,
    Gifford J. Wong

Consortia

WAIS Divide Project Members

Contributions

The manuscript was written by T.J.F., E.J.S. and B.R.M. K.C.T. organized the WAIS Divide Project. T.J.F., K.C.T and T.J.P. made the electrical measurements and developed the electrical timescale with K.C.M. E.J.S., J.W.C.W., A.J.S., P.N., B.H.V. and S.W.S. measured the stable-isotope record. J.R.M., M.S., O.J.M. and R.E. developed the chemistry timescale and measured Na. E.J.B., T.S., L.E.M., J.S.E. and J.E.L. made the methane measurements. G.D.C. and K.M.C. measured the borehole temperature profile. J.C.-D. and D.F. provided an independent timescale for the brittle ice. Q.D., S.W.S. and E.J.S. performed the climate modelling. T.J.F., E.D.W., H. Conway and K.M.C. performed the ice-flow modelling to determine the accumulation rate. H. Cheng, R.L.E., X.W., J.P.S. and T.J.F. made comparisons with the Hulu cave timescale. M.K.S., J.J.F., J.M.F., D.E.V. and R.B.A. examined the physical properties of the core. W.M., J.J. and N.M. designed the drill. G.H. designed core-processing techniques. A.J.O., B.H.V., D.E.V., K.C.T., T.J.P. and G.J.W. led collection and processing of the core in the field.

Corresponding author

Correspondence toT. J. Fudge.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Additional information

Lists of participants and their affiliations appear at the end of the paper.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References and Supplementary Figures 1-10. (PDF 1916 kb)

Supplementary Data

This file contains the data and model output used in figures 1-4. (XLSX 2222 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing.Nature 500, 440–444 (2013). https://doi.org/10.1038/nature12376

Download citation