Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network (original) (raw)

References

  1. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).
    Article CAS Google Scholar
  2. Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).
    Article CAS Google Scholar
  3. Ozier, O., Amin, N. & Ideker, T. Global architecture of genetic interactions on the protein network. Nat. Biotechnol. 21, 490–491 (2003).
    Article CAS Google Scholar
  4. Goh, K.I., Oh, E., Jeong, H., Kahng, B. & Kim, D. Classification of scale-free networks. Proc. Natl. Acad. Sci. USA 99, 12583–12588 (2002).
    Article CAS Google Scholar
  5. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabasi, A.L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).
    Article CAS Google Scholar
  6. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E.K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009 (2006).
    Article CAS Google Scholar
  7. Rossell, S. et al. Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103, 2166–2171 (2006).
    Article CAS Google Scholar
  8. Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc. Natl. Acad. Sci. USA 104, 15753–15758 (2007).
    Article CAS Google Scholar
  9. Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22, 86–92 (2004).
    Article CAS Google Scholar
  10. Kharchenko, P., Church, G.M. & Vitkup, D. Expression dynamics of a cellular metabolic network. Mol. Syst. Biol. 1, 2005 0016 (2005).
    Article Google Scholar
  11. Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nat. Genet. 36, 486–491 (2004).
    Article CAS Google Scholar
  12. Zhang, L.V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005).
    Article CAS Google Scholar
  13. Forster, J., Famili, I., Fu, P., Palsson, B.O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).
    Article CAS Google Scholar
  14. Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004).
    Article CAS Google Scholar
  15. Chechik, G. & Koller, D. Timing properties of gene expression responses to environmental changes. J. Cell Biol. (in press).
  16. Lai, L.C., Kosorukoff, A.L., Burke, P.V. & Kwast, K.E. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol. Cell. Biol. 25, 4075–4091 (2005).
    Article CAS Google Scholar
  17. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).
    Article CAS Google Scholar
  18. Gasch, A.P. et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12, 2987–3003 (2001).
    Article CAS Google Scholar
  19. Ralser, M. et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6, 10 (2007).
    Article Google Scholar
  20. Grant, C.M. Metabolic reconfiguration is a regulated response to oxidative stress. J. Biol. 7, 1 (2008).
    Article Google Scholar
  21. Parrou, J.L., Teste, M.A. & Francois, J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143, 1891–1900 (1997).
    Article CAS Google Scholar
  22. Chin, C.S., Chubukov, V., Jolly, E.R., DeRisi, J. & Li, H. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways. PLoS Biol. 6, e146 (2008).
    Article Google Scholar
  23. Bilu, Y., Shlomi, T., Barkai, N. & Ruppin, E. Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comput. Biol. 2, e106 (2006).
    Article Google Scholar
  24. Kauffman, K.J., Prakash, P. & Edwards, J.S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003).
    Article CAS Google Scholar
  25. Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007).
    Article CAS Google Scholar
  26. Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292, 2080–2083 (2001).
    Article CAS Google Scholar
  27. Ronen, M., Rosenberg, R., Shraiman, B.I. & Alon, U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA 99, 10555–10560 (2002).
    Article CAS Google Scholar
  28. Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962–972 (2006).
    Article CAS Google Scholar
  29. Tanay, A., Gat-Viks, I. & Shamir, R. A global view of the selection forces in the evolution of yeast cis-regulation. Genome Res. 14, 829–834 (2004).
    Article CAS Google Scholar
  30. Raijman, D., Shamir, R. & Tanay, A. Evolution and selection in yeast promoters: analyzing the combined effect of diverse transcription factor binding sites. PLoS Comput. Biol. 4, e7 (2008).
    Article Google Scholar
  31. Lam, F.H., Steger, D.J. & O'Shea, E.K. Chromatin decouples promoter threshold from dynamic range. Nature 453, 246–250 (2008).
    Article CAS Google Scholar
  32. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).
    Article CAS Google Scholar
  33. Workman, C.T. et al. A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006).
    Article CAS Google Scholar
  34. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).
    Article CAS Google Scholar
  35. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).
    Article CAS Google Scholar
  36. Keene, J.D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).
    Article CAS Google Scholar
  37. Han, J.D. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93 (2004).
    Article CAS Google Scholar
  38. Jensen, L.J., Jensen, T.S., de Lichtenberg, U., Brunak, S. & Bork, P. Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443, 594–597 (2006).
    Article CAS Google Scholar
  39. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).
    Article CAS Google Scholar
  40. O'Rourke, S.M. & Herskowitz, I. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol. Cell. Biol. 22, 4739–4749 (2002).
    Article CAS Google Scholar
  41. Causton, H.C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).
    Article CAS Google Scholar
  42. Kitagawa, E., Akama, K. & Iwahashi, H. Effects of iodine on global gene expression in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69, 2285–2293 (2005).
    Article CAS Google Scholar
  43. Zakrzewska, A., Boorsma, A., Brul, S., Hellingwerf, K.J. & Klis, F.M. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot. Cell 4, 703–715 (2005).
    Article CAS Google Scholar
  44. Mercier, G. et al. A haploid-specific transcriptional response to irradiation in Saccharomyces cerevisiae. Nucleic Acids Res. 33, 6635–6643 (2005).
    Article CAS Google Scholar
  45. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).
    Article CAS Google Scholar
  46. Newman, J.R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).
    Article CAS Google Scholar
  47. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).
    Article CAS Google Scholar

Download references