Dynamic modularity in protein interaction networks predicts breast cancer outcome (original) (raw)
Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D. & Ideker, T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol.3, 140 (2007). Article Google Scholar
Brown, K.R. & Jurisica, I. Online predicted human interaction database. Bioinformatics21, 2076–2082 (2005). ArticleCAS Google Scholar
Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA101, 6062–6067 (2004). ArticleCAS Google Scholar
Chatr-aryamontri, A. et al. MINT: the Molecular INTeraction database. Nucleic Acids Res.35, D572–D574 (2007). ArticleCAS Google Scholar
von Mering, C. et al. STRING 7–recent developments in the integration and prediction of protein interactions. Nucleic Acids Res.35, D358–D362 (2007). ArticleCAS Google Scholar
Fraser, H.B. Modularity and evolutionary constraint on proteins. Nat. Genet.37, 351–352 (2005). ArticleCAS Google Scholar
Han, J.D. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature430, 88–93 (2004). ArticleCAS Google Scholar
Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet.5, 101–113 (2004). ArticleCAS Google Scholar
de Lichtenberg, U., Jensen, L.J., Brunak, S. & Bork, P. Dynamic complex formation during the yeast cell cycle. Science307, 724–727 (2005). ArticleCAS Google Scholar
Tengowski, M.W., Feng, D., Sutovsky, M. & Sutovsky, P. Differential expression of genes encoding constitutive and inducible 20S proteasomal core subunits in the testis and epididymis of theophylline- or 1,3-dinitrobenzene-exposed rats. Biol. Reprod.76, 149–163 (2007). ArticleCAS Google Scholar
Thomas, M.K., Yao, K.M., Tenser, M.S., Wong, G.G. & Habener, J.F. Bridge-1, a novel PDZ-domain coactivator of E2A-mediated regulation of insulin gene transcription. Mol. Cell. Biol.19, 8492–8504 (1999). ArticleCAS Google Scholar
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet.25, 25–29 (2000). ArticleCAS Google Scholar
Yip, K.Y., Yu, H., Kim, P.M., Schultz, M. & Gerstein, M. The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioiformatics22, 2968–2970 (2006). ArticleCAS Google Scholar
Yu, H., Greenbaum, D., Xin Lu, H., Zhu, X. & Gerstein, M. Genomic analysis of essentiality within protein networks. Trends Genet.20, 227–231 (2004). ArticleCAS Google Scholar
Puntervoll, P. et al. ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res.31, 3625–3630 (2003). ArticleCAS Google Scholar
Letunic, I. et al. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res.34, D257–D260 (2006). ArticleCAS Google Scholar
McKusick, V.A. Mendelian inheritance in man and its online version, OMIM. Am. J. Hum. Genet.80, 588–604 (2007). ArticleCAS Google Scholar
Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer4, 177–183 (2004). ArticleCAS Google Scholar
van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347, 1999–2009 (2002). ArticleCAS Google Scholar
Roukos, D.H. Prognosis of breast cancer in carriers of BRCA1 and BRCA2 mutations. N. Engl. J. Med.357, 1555–1556, author reply 1556.
Soderlund, K. et al. Intact Mre11/Rad50/Nbs1 complex predicts good response to radiotherapy in early breast cancer. Int. J. Radiat. Oncol. Biol. Phys.68, 50–58 (2007). Article Google Scholar
Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA98, 5116–5121 (2001). ArticleCAS Google Scholar
Chang, H.Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol.2, E7 (2004). Article Google Scholar
Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356, 217–226 (2007). ArticleCAS Google Scholar
Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA100, 8418–8423 (2003). ArticleCAS Google Scholar
Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447, 1087–1093 (2007). ArticleCAS Google Scholar
Frey, B.J. & Dueck, D. Clustering by passing messages between data points. Science315, 972–976 (2007). ArticleCAS Google Scholar
Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351, 2817–2826 (2004). ArticleCAS Google Scholar
Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl. Cancer Inst.98, 1183–1192 (2006). ArticleCAS Google Scholar
Haibe-Kains, B. et al. Comparison of prognostic gene expression signatures for breast cancer. BMC Genomics9, 394 (2008). Article Google Scholar
Bertin, N. et al. Confirmation of organized modularity in the yeast interactome. PLoS Biol.e153 (2007).
von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature417, 399–403 (2002). ArticleCAS Google Scholar
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). ArticleCAS Google Scholar
Linding, R. et al. Systematic discovery of in vivo phosphorylation networks. Cell129, 1415–1426 (2007). ArticleCAS Google Scholar