Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells (original) (raw)
Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321, 699–702 (2008). ArticleCASPubMed Google Scholar
Eminli, S. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet.41, 968–976 (2009). ArticleCASPubMedPubMed Central Google Scholar
Eminli, S., Utikal, J., Arnold, K., Jaenisch, R. & Hochedlinger, K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells26, 2467–2474 (2008). ArticleCASPubMed Google Scholar
Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA105, 2883–2888 (2008). ArticleCASPubMedPubMed Central Google Scholar
Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451, 141–146 (2008). ArticleCASPubMed Google Scholar
Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr. Biol.18, 890–894 (2008). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCASPubMed Google Scholar
Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26, 1276–1284 (2008). ArticleCASPubMed Google Scholar
Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell3, 340–345 (2008). ArticleCASPubMedPubMed Central Google Scholar
Utikal, J., Maherali, N., Kulalert, W. & Hochedlinger, K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci.122, 3502–3510 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, J.B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature454, 646–650 (2008). ArticleCASPubMed Google Scholar
Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell2, 525–528 (2008). ArticleCASPubMed Google Scholar
Miura, K. et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol.27, 743–745 (2009). ArticleCASPubMed Google Scholar
Ghosh, Z. et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One5, e8975 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136, 964–977 (2009). ArticleCASPubMedPubMed Central Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCASPubMed Google Scholar
Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature465, 175–181 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science321, 1218–1221 (2008). ArticleCASPubMed Google Scholar
Ebert, A.D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature457, 277–280 (2009). ArticleCASPubMed Google Scholar
Saha, K. & Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell5, 584–595 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol.26, 916–924 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stadtfeld, M., Maherali, N., Breault, D.T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell2, 230–240 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell134, 37–47 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stadtfeld, M., Maherali, N., Borkent, M. & Hochedlinger, K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat. Methods7, 53–55 (2010). ArticleCASPubMed Google Scholar
Chin, M.H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5, 111–123 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCASPubMed Google Scholar
Marion, R.M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell4, 141–154 (2009). ArticleCASPubMed Google Scholar
Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev.16, 1209–1219 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development130, 1673–1680 (2003). ArticleCASPubMed Google Scholar
Ng, R.K. & Gurdon, J.B. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl. Acad. Sci. USA102, 1957–1962 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ng, R.K. & Gurdon, J.B. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat. Cell Biol.10, 102–109 (2008). ArticleCASPubMed Google Scholar
Feng, Q. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells28, 704–712 (2010). ArticlePubMed Google Scholar
Hu, B.Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. USA107, 4335–4340 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature doi:10.1038/nature09342 (19 July 2010).
Conboy, I.M., Conboy, M.J., Smythe, G.M. & Rando, T.A. Notch-mediated restoration of regenerative potential to aged muscle. Science302, 1575–1577 (2003). ArticleCASPubMed Google Scholar
Sherwood, R.I. et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell119, 543–554 (2004). ArticleCASPubMed Google Scholar
Cheshier, S.H., Morrison, S.J., Liao, X. & Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA96, 3120–3125 (1999). ArticleCASPubMedPubMed Central Google Scholar
Huang, D.W. et al. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc.4, 44–57 (2009). ArticleCAS Google Scholar
Figueroa, M.E., Melnick, A. & Greally, J.M. Genome-wide determination of DNA methylation by Hpa II tiny fragment enrichment by ligation-mediated PCR (HELP) for the study of acute leukemias. Methods Mol. Biol.538, 395–407 (2009). ArticleCASPubMed Google Scholar
Selzer, R.R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosom. Cancer44, 305–319 (2005). ArticleCASPubMed Google Scholar
Thompson, R.F. et al. An analytical pipeline for genomic representations used for cytosine methylation studies. Bioinformatics24, 1161–1167 (2008). ArticleCASPubMed Google Scholar
Culhane, A.C., Thioulouse, J., Perriere, G. & Higgins, D.G. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics21, 2789–2790 (2005). ArticleCASPubMed Google Scholar
Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA102, 15785–15790 (2005). ArticleCASPubMedPubMed Central Google Scholar