Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection (original) (raw)

References

  1. Morimoto, R.I., Jurivich, D.A., Kroeger, R.E., Mathur, S.K., Murphy, S.P., Nakai, A. et al. 1994. Regulation of heat shock gene expression by a family of heat shock factors, in pp 417–455. The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  2. Baeuerle, P.A. and Baltimore, D. 1996. NF-κB: ten years after. Cell 87: 13–20.
    Article CAS Google Scholar
  3. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. 1996. Stress-inducible cellular responses. Birkhauser Verlag, Basel, Switzerland.
    Google Scholar
  4. Parsell, D.A. and Lindquist, S. 1994. Heat shock proteins and stress tolerance, pp. 457–494, in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  5. Morimoto, R.I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410.
    Article CAS Google Scholar
  6. Lis, J. and Wu, C. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4.
    Article CAS Google Scholar
  7. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–469.
    Article CAS Google Scholar
  8. Wu, B.J. and Morimoto, R.I. 1985. Transcription of the human hsp70 gene is induced by serum stimulation. Proc. Natl. Acad. Sci. USA 82: 6070–6074.
    Article CAS Google Scholar
  9. Williams, G.T., McClanahan, T.K., and Morimoto, R.I. 1989. E 1 a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol. Cell. Biol. 9: 2574–2587.
    Article CAS Google Scholar
  10. Kanei-lshii, C., Tanikawa, J., Nadai, A., Morimoto, R.I., and Ishii, S. 1997. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 277: 246–248.
    Article Google Scholar
  11. Craig, E. and Gross, C.A., 1991. Hsp the cellular thermometer? Trends Biochem. Sci. 16: 135–140.
    Article CAS Google Scholar
  12. Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.
    Article CAS Google Scholar
  13. Morimoto, R.I., Sarge, K.D., and Abravaya, K. 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem. 267: 21987–21990.
    CAS PubMed Google Scholar
  14. Gamer, J., Bujard, H., and Bukau, B. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69: 833–842.
    Article CAS Google Scholar
  15. Abravaya, K., Myers, M.P., Murphy, S.P., and Morimoto, R.I. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene transcription. Genes Dev. 6: 1153–1164.
    Article CAS Google Scholar
  16. Shi, Y., Mosser, D.D., and Morimoto, R.I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12: 654–666.
    Article CAS Google Scholar
  17. Scharf, K.D., Rose, S., Zott, W., Schoff, F., and Nover, L. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.
    Article CAS Google Scholar
  18. Rabindran, S.K., Giorgi, G., Clos, J., and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88: 6906–6910.
    Article CAS Google Scholar
  19. Sarge, K.D., Zimarino, V., Holm, K., Wu, C., Morimoto, R.I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.
    Google Scholar
  20. Scheutz, T.J., Gallo, G.J., Sheldon, L., Tempst, P., and Kingston, R.E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88: 6910–6915.
    Google Scholar
  21. Nakai, A. and Morimoto, R.I. 1993. Characterization of a novel chicken heat shock transcription factor, HSF3, suggests a new regulatory pathway. Mol. Cell Biol. 13: 1983–1997.
    Article CAS Google Scholar
  22. Nakai, A., Kawazoe, Y., Tanabe, M., Nagata, K. and Morimoto, R.I., 1995. DNA-binding properties to two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell Biol. 15: 5268–5278.
    Article CAS Google Scholar
  23. Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R.I., and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell Biol. 17: 469–481.
    Article CAS Google Scholar
  24. Tanabe, M., Kawazoe, Y., Takeda, S., Morimoto, R.I., Nagata, K., and Nakai, A. 1998. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and the loss of thermotoleranoe. EMBO J. 17: 1750–1758.
    Article CAS Google Scholar
  25. Kingston, R.E., Scheutz, T.J., and Larin, Z. 1987. Heat-inducible human factor that binds to a human hsp70 promotor. Mol. Cell. Biol. 13: 3370–3383.
    Google Scholar
  26. Zimarino, V. and Wu, C. 1987. Induction of sequence-specific binding of _Drosophila_heat shock activator protein without protein synthesis. Nature 327: 727–730.
    Article CAS Google Scholar
  27. Larson, J.S., Scheutz, T.J., and Kingston, R.E. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335: 372–375.
    Article CAS Google Scholar
  28. Mosser, D.D., Theodorakis, N.G. and Morimoto, R.I. 1988. Coordinate changes in heat shock element-binding activity and hsp70 gene transcription rates in human cells. Mol. Cell Biol. 8: 4736–4744.
    Article CAS Google Scholar
  29. Sistonen, L., Sarge, K.D., Phillips, B., Abravaya, K., and Morimoto, R. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell Biol. 12: 4104–4111.
    Article CAS Google Scholar
  30. Zimarino, V., Wilson, S., and Wu, C. 1990. Antibody-mediated activation of _Drosophila_heat shock factor in vitro. Science 249: 546–549.
    Article CAS Google Scholar
  31. Westwood, J.T., Clos, J., and Wu, C. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353: 822–827.
    Article CAS Google Scholar
  32. Westwood, J.T. and Wu, C. 1993. Activation of _Drosophila_heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol. 13: 3481–3486.
    Article CAS Google Scholar
  33. Rallu, M., Loones, M., Lallemand, Y., Morimoto, R.I., Morange, M., and Mezger, V. 1997. Function and regulation of heat shock factor 2 during mouse embryogene-sis. Proc. Natl. Acad. Sci. USA 94: 2392–2397.
    Article CAS Google Scholar
  34. Kline, M.P. and Morimoto, R.I. 1997. Repression of the heat shock factor I tran-scriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell Biol. 17: 2107–2115.
    Article CAS Google Scholar
  35. Jurivich, D.A., Sistonen, L., Droes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.
    Article CAS Google Scholar
  36. Sarge, K.D., Murphy, S.R. and Morimoto, R.I. 1993. Activation of heat shock gene transcription by HSF1 involves oligomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell Biol. 13: 1392–1407.
    Article CAS Google Scholar
  37. Cotto, J.J., Kline, M.P., and Morimoto, R.I. 1996. Activation of heat shock factor I DNA binding precedes stress-induced serine phosphorylation: evidence for a multistep pathway of regulation. J. Biol. Chem. 271: 3355–3358.
    Article CAS Google Scholar
  38. Cotto, J.J., Fox, S.G. and Morimoto, R.I. 1997. HSF1 granules: a novel stress-induced nuclear compartment of human cells.J. Cell Sci. 110: 2925–2934.
    CAS PubMed Google Scholar
  39. Jolly, C., Morimoto, R.I., Robert-Nicoud, M. and Vourc'h, C. 1997. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci. 110: 2935–2941.
    CAS PubMed Google Scholar
  40. Satyal, S., Chen, D., Fox, S.G., Kramer, J.M. and Morimoto, R.I. 1998. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev. 12: 1962–1974.
    Article CAS Google Scholar
  41. Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–579.
    Article CAS Google Scholar
  42. Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 1501–1507.
    Article CAS Google Scholar
  43. Schroder, H., Langer, T., Hartl, F.U. and Bukau, B., 1993. DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12: 4137–4144.
    Article CAS Google Scholar
  44. Freeman, B.C. and Morimoto, R.I. 1996. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-l have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15: 2969–2979.
    Article CAS Google Scholar
  45. Freeman, B.C., Toft, D.O., and Morimoto, R.I. 1996. Molecular chaperone machines: chaperone activities of the cyclophlin Cyp-40 and the steroid apore-ceptor-associated protein p23. Science 274: 1718–1720.
    Article CAS Google Scholar
  46. Pratt, W.B. and Welsh, M.J. 1994. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin. Cell Biol. 5: 83–93.
    Article CAS Google Scholar
  47. Craig, E.A., Baxter, B.K., Becker, J., Halladay, J., and Ziegelhoffer, T. 1994. Cytosolic hsp70s of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation, pp. 31–52 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  48. Langer, T. and Neupert, W. 1994. Chaperoning mitochondrial biogenesis, pp. 53–84 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  49. Georgopoulos, C., Liberek, K., Zylicz, M., and Ang, D. 1994. Properties of the heat shook proteins of Escherichia coli and the autoregulation of the heat shock response. pp. 209–249 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  50. McKay, D.B., Wilbanks, S.M., Flaherty, K.M., Ha, J., O'Brian, M.C., and Shirvanee, L.L. 1994. Stress-70 proteins and their interaction with nucleotides. pp. 153–177 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  51. Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. . et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614.
    Article CAS Google Scholar
  52. Freeman, B.C., Myers, M.R., Schumacher, R., and Morimoto, R.I. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 14: 2281–2292.
    Article CAS Google Scholar
  53. Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. et al. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specifity of BiP. Cell 75: 717–728.
    Article CAS Google Scholar
  54. Hohfeld, J., Minami, Y., and Hartl, F.U., 1995. Hip, a new cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589–598.
    Article CAS Google Scholar
  55. Takeyama, S., Bimston, D.N., Matsuzawa, S., Freeman, B.C., Aime-Sempe, C., Xie, Z. et al. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16: 4887–4896.
    Article Google Scholar
  56. Pratt, W.B., Gehring, U., and Toft, D.O. Molecular chaperoning of steroid hormone receptors. pp. 79–95, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland.
    Chapter Google Scholar
  57. Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A., and Oren, M. 1986. Specific interactions between the p53 cellular tumour antigen and major heat shock proteins. Nature 320: 182–184.
    Article CAS Google Scholar
  58. Suzue, K. and Young, R.A. 1996. Heat shock proteins as immunological carriers and vaccines. pp. 451–465, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., and Polla, B. (eds.). Birkhauser Verlag, Basel, Switzerland.
    Chapter Google Scholar
  59. Mestril, R., Chi, S., Sayen, R., O'Reilly, K., and Dillmann, W.H. 1994. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J. Clin. Invest. 93: 759–767.
    Article CAS Google Scholar
  60. Marber, M.S., Mestril, R., Chi, S.H., Sayen, M.R., Yellon, D.M., and Dillmann, W.H. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95: 1446–1456.
    Article CAS Google Scholar
  61. Plumier, J.C.L., Ross, B.M., Currie, R.W., Angelidis, C.E., Kazlaris, H., Kollias, G. et al. 1995. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95: 1854–1860.
    Article CAS Google Scholar
  62. Morris, S.D., Cumming, D.V., Latchman, D.S., and Yellon, D.M. 1996. Specific induction of the 70-kD heat stress protein by the tyrosine kinase inhibitor her-bimycin-A protects rat neonatal cardiomyocytes. J. Clin. Invest. 97: 706–712.
    Article CAS Google Scholar
  63. Vigh, L., Literati, P.N., Horvath, I., Torok, Z., Balogh, G., Glatz, A. et al. 1997. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat. Med. 3: 1150–1154.
    Article CAS Google Scholar
  64. Jurivich, D.A., Sistonen, L., Kroes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.
    Article CAS Google Scholar
  65. Mathew, A., Mathur, S., and Morimoto, R.I. 1998. Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin proteasome pathway. Mol. Cell. Biol. 18: 5091–5098.
    Article CAS Google Scholar
  66. Santoro, M.G. 1997. Antiviral activity of cyclopentenone prostanoids. Trends Microbiol. 5: 276–281.
    Article CAS Google Scholar
  67. Lee, B.S., Chen, J., Angelidis, C., Jurivich, D.A., and Moirmoto, R.I. 1995. Pharmacological modulation of Heat Shock Factor 1 by anti-inflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl. Acad. Sci. USA 92: 7207–7211.
    Article CAS Google Scholar
  68. Amici, C., Rossi, A., and Santoro, M.G. 1995. Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response. Cancer Res. 55: 4452–4457.
    CAS PubMed Google Scholar
  69. Santoro, M.G., Garaci, E., and Amici, C. 1989. Prostaglandins with antiprolifera-tive activity induce the synthesis of a heat shock protein in human cells. Proc. Natl. Acad. Sci. USA 86: 8407–8411.
    Article CAS Google Scholar
  70. Amici, C., Sistonen, L., Santoro, M.G., and Morimoto, R.I. 1992. Antiproliferative prostaglandins activate heat shock transcription factor. Proc. Natl. Acad. Sci. USA 89: 6227–6231.
    Article CAS Google Scholar
  71. Forman, B.M., Tontonoz, P., Chen, J., Brun, R.R., Spiegelman, B.M., and Evans, R.M. 1995. M.15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803–812.
    Article CAS Google Scholar
  72. Rossi, A., Elia, G., and Santoro, M.G. 1997. Inhibition of nuclear factor κB by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc. Natl. Acad. Sci. USA 94: 746–750.
    Article CAS Google Scholar
  73. Rossi, A., Elia, G., and Santoro, M.G. 1996. 2-Cyclopenten-l-one, a new inducer of heat shock protein 70 with antiviral activity. J. Biol. Chem. 271: 32192–32196.
    Article CAS Google Scholar
  74. Santoro, M.G. 1996. Viral infection, pp. 337–357, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland.
    Chapter Google Scholar
  75. Rozera, C., Carattoli, A., De Marco, A., Amici, C., Giorgi, C. and Santoro, M.G. 1996. Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. J. Clin. Invest. 97: 1795–1803.
    Article CAS Google Scholar
  76. Thanos, D. and Maniatis, T. 1995. NF-κB: a lesson in family values. Cell 80: 529–532.
    Article CAS Google Scholar
  77. Lenardo, M.J. and Baltimore, D. 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227–229.
    Article CAS Google Scholar
  78. Rossi, A., Elia, G., and Santoro, M.G. 1998. Activation of the heat shock Factor 1 by serine protease inhibitors: an affect associated with nuclear Factor-κB inhibition. J. Biol. Chem. 273: 16446–16452.
    Article CAS Google Scholar
  79. Vane, J. and O'Grady, J. 1993. Therapeutic applications of prostaglandins, in Edward Arnold (ed.). Hodder & Stroughton Publishers, Sevenoaks, UK.
    Google Scholar
  80. Sinclair, S.B., Greig, P.D. and Blendis, L.M. et al. 1989. Biochemical and clinical response of fulminant viral hepatitis to administration of prostaglandin E. J. Clin. Invest. 84: 1063–1069.
    Article CAS Google Scholar

Download references