Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection (original) (raw)
References
Morimoto, R.I., Jurivich, D.A., Kroeger, R.E., Mathur, S.K., Murphy, S.P., Nakai, A. et al. 1994. Regulation of heat shock gene expression by a family of heat shock factors, in pp 417–455. The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar
Baeuerle, P.A. and Baltimore, D. 1996. NF-κB: ten years after. Cell87: 13–20. ArticleCAS Google Scholar
Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. 1996. Stress-inducible cellular responses. Birkhauser Verlag, Basel, Switzerland. Google Scholar
Parsell, D.A. and Lindquist, S. 1994. Heat shock proteins and stress tolerance, pp. 457–494, in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar
Morimoto, R.I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science259: 1409–1410. ArticleCAS Google Scholar
Lis, J. and Wu, C. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell74: 1–4. ArticleCAS Google Scholar
Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol.11: 441–469. ArticleCAS Google Scholar
Wu, B.J. and Morimoto, R.I. 1985. Transcription of the human hsp70 gene is induced by serum stimulation. Proc. Natl. Acad. Sci. USA82: 6070–6074. ArticleCAS Google Scholar
Williams, G.T., McClanahan, T.K., and Morimoto, R.I. 1989. E 1 a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol. Cell. Biol.9: 2574–2587. ArticleCAS Google Scholar
Kanei-lshii, C., Tanikawa, J., Nadai, A., Morimoto, R.I., and Ishii, S. 1997. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science277: 246–248. Article Google Scholar
Craig, E. and Gross, C.A., 1991. Hsp the cellular thermometer? Trends Biochem. Sci.16: 135–140. ArticleCAS Google Scholar
Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature355: 33–45. ArticleCAS Google Scholar
Morimoto, R.I., Sarge, K.D., and Abravaya, K. 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem.267: 21987–21990. CASPubMed Google Scholar
Gamer, J., Bujard, H., and Bukau, B. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell69: 833–842. ArticleCAS Google Scholar
Abravaya, K., Myers, M.P., Murphy, S.P., and Morimoto, R.I. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene transcription. Genes Dev.6: 1153–1164. ArticleCAS Google Scholar
Shi, Y., Mosser, D.D., and Morimoto, R.I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev.12: 654–666. ArticleCAS Google Scholar
Scharf, K.D., Rose, S., Zott, W., Schoff, F., and Nover, L. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J.9: 4495–4501. ArticleCAS Google Scholar
Rabindran, S.K., Giorgi, G., Clos, J., and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA88: 6906–6910. ArticleCAS Google Scholar
Sarge, K.D., Zimarino, V., Holm, K., Wu, C., Morimoto, R.I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding domain of the yeast HSF. EMBO J.9: 4495–4501. Google Scholar
Scheutz, T.J., Gallo, G.J., Sheldon, L., Tempst, P., and Kingston, R.E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA88: 6910–6915. Google Scholar
Nakai, A. and Morimoto, R.I. 1993. Characterization of a novel chicken heat shock transcription factor, HSF3, suggests a new regulatory pathway. Mol. Cell Biol.13: 1983–1997. ArticleCAS Google Scholar
Nakai, A., Kawazoe, Y., Tanabe, M., Nagata, K. and Morimoto, R.I., 1995. DNA-binding properties to two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell Biol.15: 5268–5278. ArticleCAS Google Scholar
Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R.I., and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell Biol.17: 469–481. ArticleCAS Google Scholar
Tanabe, M., Kawazoe, Y., Takeda, S., Morimoto, R.I., Nagata, K., and Nakai, A. 1998. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and the loss of thermotoleranoe. EMBO J.17: 1750–1758. ArticleCAS Google Scholar
Kingston, R.E., Scheutz, T.J., and Larin, Z. 1987. Heat-inducible human factor that binds to a human hsp70 promotor. Mol. Cell. Biol.13: 3370–3383. Google Scholar
Zimarino, V. and Wu, C. 1987. Induction of sequence-specific binding of _Drosophila_heat shock activator protein without protein synthesis. Nature327: 727–730. ArticleCAS Google Scholar
Larson, J.S., Scheutz, T.J., and Kingston, R.E. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature335: 372–375. ArticleCAS Google Scholar
Mosser, D.D., Theodorakis, N.G. and Morimoto, R.I. 1988. Coordinate changes in heat shock element-binding activity and hsp70 gene transcription rates in human cells. Mol. Cell Biol.8: 4736–4744. ArticleCAS Google Scholar
Sistonen, L., Sarge, K.D., Phillips, B., Abravaya, K., and Morimoto, R. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell Biol.12: 4104–4111. ArticleCAS Google Scholar
Zimarino, V., Wilson, S., and Wu, C. 1990. Antibody-mediated activation of _Drosophila_heat shock factor in vitro. Science249: 546–549. ArticleCAS Google Scholar
Westwood, J.T., Clos, J., and Wu, C. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature353: 822–827. ArticleCAS Google Scholar
Westwood, J.T. and Wu, C. 1993. Activation of _Drosophila_heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol.13: 3481–3486. ArticleCAS Google Scholar
Rallu, M., Loones, M., Lallemand, Y., Morimoto, R.I., Morange, M., and Mezger, V. 1997. Function and regulation of heat shock factor 2 during mouse embryogene-sis. Proc. Natl. Acad. Sci. USA94: 2392–2397. ArticleCAS Google Scholar
Kline, M.P. and Morimoto, R.I. 1997. Repression of the heat shock factor I tran-scriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell Biol.17: 2107–2115. ArticleCAS Google Scholar
Jurivich, D.A., Sistonen, L., Droes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science255: 1243–1245. ArticleCAS Google Scholar
Sarge, K.D., Murphy, S.R. and Morimoto, R.I. 1993. Activation of heat shock gene transcription by HSF1 involves oligomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell Biol.13: 1392–1407. ArticleCAS Google Scholar
Cotto, J.J., Kline, M.P., and Morimoto, R.I. 1996. Activation of heat shock factor I DNA binding precedes stress-induced serine phosphorylation: evidence for a multistep pathway of regulation. J. Biol. Chem.271: 3355–3358. ArticleCAS Google Scholar
Cotto, J.J., Fox, S.G. and Morimoto, R.I. 1997. HSF1 granules: a novel stress-induced nuclear compartment of human cells.J. Cell Sci.110: 2925–2934. CASPubMed Google Scholar
Jolly, C., Morimoto, R.I., Robert-Nicoud, M. and Vourc'h, C. 1997. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci.110: 2935–2941. CASPubMed Google Scholar
Satyal, S., Chen, D., Fox, S.G., Kramer, J.M. and Morimoto, R.I. 1998. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev.12: 1962–1974. ArticleCAS Google Scholar
Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature381: 571–579. ArticleCAS Google Scholar
Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J.16: 1501–1507. ArticleCAS Google Scholar
Schroder, H., Langer, T., Hartl, F.U. and Bukau, B., 1993. DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J.12: 4137–4144. ArticleCAS Google Scholar
Freeman, B.C. and Morimoto, R.I. 1996. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-l have distinct roles in recognition of a non-native protein and protein refolding. EMBO J.15: 2969–2979. ArticleCAS Google Scholar
Freeman, B.C., Toft, D.O., and Morimoto, R.I. 1996. Molecular chaperone machines: chaperone activities of the cyclophlin Cyp-40 and the steroid apore-ceptor-associated protein p23. Science274: 1718–1720. ArticleCAS Google Scholar
Pratt, W.B. and Welsh, M.J. 1994. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin. Cell Biol.5: 83–93. ArticleCAS Google Scholar
Craig, E.A., Baxter, B.K., Becker, J., Halladay, J., and Ziegelhoffer, T. 1994. Cytosolic hsp70s of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation, pp. 31–52 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar
Langer, T. and Neupert, W. 1994. Chaperoning mitochondrial biogenesis, pp. 53–84 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar
Georgopoulos, C., Liberek, K., Zylicz, M., and Ang, D. 1994. Properties of the heat shook proteins of Escherichia coli and the autoregulation of the heat shock response. pp. 209–249 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar
McKay, D.B., Wilbanks, S.M., Flaherty, K.M., Ha, J., O'Brian, M.C., and Shirvanee, L.L. 1994. Stress-70 proteins and their interaction with nucleotides. pp. 153–177 in The biology of heat shock proteins and molecular chaperones. Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar
Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. . et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science272: 1606–1614. ArticleCAS Google Scholar
Freeman, B.C., Myers, M.R., Schumacher, R., and Morimoto, R.I. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J.14: 2281–2292. ArticleCAS Google Scholar
Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. et al. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specifity of BiP. Cell75: 717–728. ArticleCAS Google Scholar
Hohfeld, J., Minami, Y., and Hartl, F.U., 1995. Hip, a new cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell83: 589–598. ArticleCAS Google Scholar
Takeyama, S., Bimston, D.N., Matsuzawa, S., Freeman, B.C., Aime-Sempe, C., Xie, Z. et al. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J.16: 4887–4896. Article Google Scholar
Pratt, W.B., Gehring, U., and Toft, D.O. Molecular chaperoning of steroid hormone receptors. pp. 79–95, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland. Chapter Google Scholar
Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A., and Oren, M. 1986. Specific interactions between the p53 cellular tumour antigen and major heat shock proteins. Nature320: 182–184. ArticleCAS Google Scholar
Suzue, K. and Young, R.A. 1996. Heat shock proteins as immunological carriers and vaccines. pp. 451–465, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., and Polla, B. (eds.). Birkhauser Verlag, Basel, Switzerland. Chapter Google Scholar
Mestril, R., Chi, S., Sayen, R., O'Reilly, K., and Dillmann, W.H. 1994. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J. Clin. Invest.93: 759–767. ArticleCAS Google Scholar
Marber, M.S., Mestril, R., Chi, S.H., Sayen, M.R., Yellon, D.M., and Dillmann, W.H. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest.95: 1446–1456. ArticleCAS Google Scholar
Plumier, J.C.L., Ross, B.M., Currie, R.W., Angelidis, C.E., Kazlaris, H., Kollias, G. et al. 1995. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest.95: 1854–1860. ArticleCAS Google Scholar
Morris, S.D., Cumming, D.V., Latchman, D.S., and Yellon, D.M. 1996. Specific induction of the 70-kD heat stress protein by the tyrosine kinase inhibitor her-bimycin-A protects rat neonatal cardiomyocytes. J. Clin. Invest.97: 706–712. ArticleCAS Google Scholar
Vigh, L., Literati, P.N., Horvath, I., Torok, Z., Balogh, G., Glatz, A. et al. 1997. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat. Med.3: 1150–1154. ArticleCAS Google Scholar
Jurivich, D.A., Sistonen, L., Kroes, R.A., and Morimoto, R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science255: 1243–1245. ArticleCAS Google Scholar
Mathew, A., Mathur, S., and Morimoto, R.I. 1998. Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin proteasome pathway. Mol. Cell. Biol.18: 5091–5098. ArticleCAS Google Scholar
Santoro, M.G. 1997. Antiviral activity of cyclopentenone prostanoids. Trends Microbiol.5: 276–281. ArticleCAS Google Scholar
Lee, B.S., Chen, J., Angelidis, C., Jurivich, D.A., and Moirmoto, R.I. 1995. Pharmacological modulation of Heat Shock Factor 1 by anti-inflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl. Acad. Sci. USA92: 7207–7211. ArticleCAS Google Scholar
Amici, C., Rossi, A., and Santoro, M.G. 1995. Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response. Cancer Res.55: 4452–4457. CASPubMed Google Scholar
Santoro, M.G., Garaci, E., and Amici, C. 1989. Prostaglandins with antiprolifera-tive activity induce the synthesis of a heat shock protein in human cells. Proc. Natl. Acad. Sci. USA86: 8407–8411. ArticleCAS Google Scholar
Amici, C., Sistonen, L., Santoro, M.G., and Morimoto, R.I. 1992. Antiproliferative prostaglandins activate heat shock transcription factor. Proc. Natl. Acad. Sci. USA89: 6227–6231. ArticleCAS Google Scholar
Forman, B.M., Tontonoz, P., Chen, J., Brun, R.R., Spiegelman, B.M., and Evans, R.M. 1995. M.15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell83: 803–812. ArticleCAS Google Scholar
Rossi, A., Elia, G., and Santoro, M.G. 1997. Inhibition of nuclear factor κB by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc. Natl. Acad. Sci. USA94: 746–750. ArticleCAS Google Scholar
Rossi, A., Elia, G., and Santoro, M.G. 1996. 2-Cyclopenten-l-one, a new inducer of heat shock protein 70 with antiviral activity. J. Biol. Chem.271: 32192–32196. ArticleCAS Google Scholar
Santoro, M.G. 1996. Viral infection, pp. 337–357, in Stress inducible cellular responses. Feige, U., Morimoto, R.I., Yahara, I., and Polla, B.S. (eds.). Birkhauser-Verlag, Basel, Switzerland. Chapter Google Scholar
Rozera, C., Carattoli, A., De Marco, A., Amici, C., Giorgi, C. and Santoro, M.G. 1996. Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. J. Clin. Invest.97: 1795–1803. ArticleCAS Google Scholar
Thanos, D. and Maniatis, T. 1995. NF-κB: a lesson in family values. Cell80: 529–532. ArticleCAS Google Scholar
Lenardo, M.J. and Baltimore, D. 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell58: 227–229. ArticleCAS Google Scholar
Rossi, A., Elia, G., and Santoro, M.G. 1998. Activation of the heat shock Factor 1 by serine protease inhibitors: an affect associated with nuclear Factor-κB inhibition. J. Biol. Chem.273: 16446–16452. ArticleCAS Google Scholar
Vane, J. and O'Grady, J. 1993. Therapeutic applications of prostaglandins, in Edward Arnold (ed.). Hodder & Stroughton Publishers, Sevenoaks, UK. Google Scholar
Sinclair, S.B., Greig, P.D. and Blendis, L.M. et al. 1989. Biochemical and clinical response of fulminant viral hepatitis to administration of prostaglandin E. J. Clin. Invest.84: 1063–1069. ArticleCAS Google Scholar