Directed evolution of human T-cell receptors with picomolar affinities by phage display (original) (raw)

References

  1. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).
    Article CAS Google Scholar
  2. Boulter, J.M. et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16, 707–711 (2003).
    Article CAS Google Scholar
  3. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).
    Article CAS Google Scholar
  4. Jager, E. et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med. 187, 265–270 (1998).
    Article CAS Google Scholar
  5. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).
    Article CAS Google Scholar
  6. Clackson, T., Hoogenboom, H.R., Griffiths, A.D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).
    Article CAS Google Scholar
  7. Hanes, J., Schaffitzel, C., Knappik, A. & Pluckthun, A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292 (2000).
    Article CAS Google Scholar
  8. Smith, I.E. New drugs for breast cancer. Lancet 360, 790–792 (2002).
    Article Google Scholar
  9. Shusta, E.V., Holler, P.D., Kieke, M.C., Kranz, D.M. & Wittrup, K.D. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754–759 (2000).
    Article CAS Google Scholar
  10. Holler, P.D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000).
    Article CAS Google Scholar
  11. Holler, P.D., Lim, A.R., Cho, B.K., Rund, L.A. & Kranz, D.M. CD8(-) T cell transfectants that express a high affinity T cell receptor exhibit enhanced peptide-dependent activation. J. Exp. Med. 194, 1043–1052 (2001).
    Article CAS Google Scholar
  12. Holler, P.D. & Kranz, D.M. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18, 255–264 (2003).
    Article CAS Google Scholar
  13. Holler, P.D., Chlewicki, L.K. & Kranz, D.M. TCRs with high affinity for foreign pMHC show self-reactivity. Nat. Immunol. 4, 55–62 (2003).
    Article CAS Google Scholar
  14. Weidanz, J.A., Card, K.F., Edwards, A., Perlstein, E. & Wong, H.C. Display of functional alphabeta single-chain T-cell receptor molecules on the surface of bacteriophage. J. Immunol. Methods 221, 59–76 (1998).
    Article CAS Google Scholar
  15. Lefranc, M-P.L.G. The T Cell Receptor Facts Book (Academic Press, London, 2001).
    Google Scholar
  16. Garboczi, D.N. et al. Assembly, specific binding, and crystallization of a human TCR-alphabeta with an antigenic Tax peptide from human T lymphotropic virus type 1 and the class I MHC molecule HLA-A2. J. Immunol. 157, 5403–5410 (1996).
    CAS PubMed Google Scholar
  17. Khalifa, M.B., Choulier, L., Lortat-Jacob, H., Altschuh, D. & Vernet, T. BIACORE data processing: an evaluation of the global fitting procedure. Anal. Biochem. 293, 194–203 (2001).
    Article CAS Google Scholar
  18. Karlsson, R. Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors. Anal. Biochem. 221, 142–151 (1994).
    Article CAS Google Scholar
  19. Hutchinson, S.L. et al. The CD8 T cell coreceptor exhibits disproportionate biological activity at extremely low binding affinities. J. Biol. Chem. 278, 24285–24293 (2003).
    Article CAS Google Scholar
  20. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).
    Article CAS Google Scholar
  21. Laugel, B. et al. Design of soluble recombinant T cell receptors for antigen targeting and T cell inhibition. J. Biol. Chem. 280, 1882–1892 (2004).
    Article Google Scholar
  22. Schirle, M. et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur. J. Immunol. 30, 2216–2225 (2000).
    Article CAS Google Scholar
  23. Cohen, C.J., Denkberg, G., Lev, A., Epel, M. & Reiter, Y. Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCR-peptide-MHC interactions. J. Mol. Recognit. 16, 324–332 (2003).
    Article CAS Google Scholar
  24. Cohen, C.J. et al. Direct phenotypic analysis of human MHC class i antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J. Immunol. 170, 4349–4361 (2003).
    Article CAS Google Scholar
  25. Biddison, W.E. et al. Tax and M1 peptide/HLA-A2-specific Fabs and T cell receptors recognize nonidentical structural features on peptide/HLA-A2 complexes. J. Immunol. 171, 3064–3074 (2003).
    Article CAS Google Scholar
  26. Held, G. et al. Dissecting cytotoxic T cell responses towards the NY-ESO-1 protein by peptide/MHC-specific antibody fragments. Eur. J. Immunol. 34, 2919 (2004).
    Article CAS Google Scholar
  27. Anderton, S.M., Radu, C.G., Lowrey, P.A., Ward, E.S. & Wraith, D.C. Negative selection during the peripheral immune response to antigen. J. Exp. Med. 193, 1–11 (2001).
    Article CAS Google Scholar
  28. Garboczi, D.N., Hung, D.T. & Wiley, D.C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. USA 89, 3429–3433 (1992).
    Article CAS Google Scholar

Download references