Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light (original) (raw)
References
Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science300, 87–91 (2003). ArticleCAS Google Scholar
Verkhusha, V.V. & Lukyanov, K.A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol.22, 289–296 (2004). ArticleCAS Google Scholar
Chudakov, D.M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol.21, 191–194 (2003). ArticleCAS Google Scholar
Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science297, 1873–1877 (2002). ArticleCAS Google Scholar
Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA99, 12651–12656 (2002). ArticleCAS Google Scholar
Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA101, 15905–15910 (2004). ArticleCAS Google Scholar
Chudakov, D.M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol.22, 1435–1439 (2004). ArticleCAS Google Scholar
Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science306, 1370–1373 (2004). ArticleCAS Google Scholar
Verkhusha, V.V. & Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol.12, 279–285 (2005). ArticleCAS Google Scholar
Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep.6, 233–238 (2005). ArticleCAS Google Scholar
Post, J.N., Lidke, K.A. & Rieger, B. Arndt-Jovin, D.J. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett.579, 325–330 (2005). ArticleCAS Google Scholar
Labas, Y.A. et al. Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA99, 4256–4261 (2002). ArticleCAS Google Scholar
Mizuno, H. et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell12, 1051–1058 (2003). ArticleCAS Google Scholar
Karasawa, S., Araki, T., Yamamoto-Hino, M. & Miyawaki, A. A green-emitting fluorescent protein from Galaxeeidae coral and its monomeric version for use in fluorescent labeling. J. Biol. Chem.278, 34167–34171 (2003). ArticleCAS Google Scholar
Nienhaus, G.U. et al. Photoconvertible fluorescent protein EosFP-biophysical properties and cell biology applications. Photochem. Photobiol., published online 17 August 2005 (doi: 10.1562/2005-05-19-RA-533).
Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol.17, 969–973 (1999). ArticleCAS Google Scholar
Ballestrem, C., Wehrle-Haller, B. & Imhof, B.A. Actin dynamics in living mammalian cells. J. Cell Sci.111, 1649–1658 (1998). CASPubMed Google Scholar
Rusan, N.M., Fagerstrom, C.J., Yvon, A.M. & Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol. Biol. Cell12, 971–980 (2001). ArticleCAS Google Scholar
Yoon, M., Moir, R.D., Prahlad, V. & Goldman, R.D. Motile properties of vimentin intermediate filament networks in living cells. J. Cell Biol.143, 147–157 (1998). ArticleCAS Google Scholar
Phair, R.D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature404, 604–609 (2000). ArticleCAS Google Scholar
Chou, Y.-H., Opal, P., Quinlan, R.A. & Goldman, R.D. The relative roles of specific N- and C-terminal phosphorylation sites in the disassembly of intermediate filament in mitotic BHK-21 cells. J. Cell Sci.109, 817–826 (1996). CASPubMed Google Scholar
Helfand, B.T., Chang, L. & Goldman, R.D. Intermediate filaments are dynamic and motile elements of cellular architecture. J. Cell Sci.117, 133–141 (2004). ArticleCAS Google Scholar
Verkhusha, V.V., Chudakov, D.M., Gurskaya, N.G., Lukyanov, S. & Lukyanov, K.A. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem. Biol.11, 845–854 (2004). ArticleCAS Google Scholar
Nienhaus, K., Nienhaus, G.U., Wiedenmann, J. & Nar, H. Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc. Natl. Acad. Sci. USA102, 9156–9159 (2005). ArticleCAS Google Scholar
He, Y.Y., Huang, J.L. & Chignell, C.F. Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA: implications in carcinogenesis. J. Biol. Chem.279, 53867–53874 (2004). ArticleCAS Google Scholar
Provost, N., Moreau, M., Leturque, A. & Nizard, C. Ultraviolet A radiation transiently disrupts gap junctional communication in human keratinocytes. Am. J. Physiol. Cell Physiol.284, C51–C59 (2003). ArticleCAS Google Scholar
Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77, 51–59 (1989). ArticleCAS Google Scholar
Patterson, G., Day, R.N. & Piston, D. Fluorescent protein spectra. J. Cell Sci.114, 837–838 (2001). CASPubMed Google Scholar
Bevis, B.J. & Glick, B.S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol.20, 83–87 (2002). ArticleCAS Google Scholar
Fradkov, A.F. et al. Far-red fluorescent tag for protein labelling. Biochem. J.368, 17–21 (2002). ArticleCAS Google Scholar
Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat. Biotechnol.14, 1252–1256 (1996). ArticleCAS Google Scholar