Modeling cellular machinery through biological network comparison (original) (raw)
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ArticleCAS Google Scholar
Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). ArticleCAS Google Scholar
Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature409, 533–538 (2001). ArticleCAS Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). ArticleCAS Google Scholar
Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000). ArticleCAS Google Scholar
Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature340, 245–246 (1989). ArticleCAS Google Scholar
Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell122, 957–968 (2005). ArticleCAS Google Scholar
Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature437, 1173–1178 (2005). ArticleCAS Google Scholar
Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). ArticleCAS Google Scholar
Peri, S. et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res.13, 2363–2371 (2003). ArticleCAS Google Scholar
Nikitin, A., Egorov, S., Daraselia, N. & Mazo, I. Pathway studio—the analysis and navigation of molecular networks. Bioinformatics19, 2155–2157 (2003). ArticleCAS Google Scholar
von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature417, 399–403 (2002). ArticleCAS Google Scholar
Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA102, 1974–1979 (2005). ArticleCAS Google Scholar
Bader, J.S., Chaudhuri, A., Rothberg, J.M. & Chant, J. Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol.22, 78–85 (2004). ArticleCAS Google Scholar
Qi, Y., Klein-Seetharaman, J. & Bar-Joseph, Z. Random forest similarity for protein-protein interaction prediction from multiple sources. Pac. Symp. Biocomput.10, 531–542 (2005). Google Scholar
Deng, M., Sun, F. & Chen, T. Assessment of the reliability of protein-protein interactions and protein function prediction. Pac. Symp. Biocomput.8, 140–151 (2003). Google Scholar
Suthram, S., Shlomi, T., Ruppin, E., Sharan, R. & Ideker, T. in Proceedings of the First Annual RECOMB Systems Biology Workshop, vol. 1 (2005). Google Scholar
Kelley, B.P. et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA100, 11394–11399 (2003). ArticleCAS Google Scholar
Rhodes, D.R. et al. Probabilistic model of the human protein-protein interaction network. Nat. Biotechnol.23, 951–959 (2005). ArticleCAS Google Scholar
Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol.23, 561–566 (2005). ArticleCAS Google Scholar
Zhang, L.V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol.4, 6 (2005). ArticleCAS Google Scholar
Matthews, L.R. et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs.” Genome Res.11, 2120–2126 (2001). ArticleCAS Google Scholar
Yu, H. et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res.14, 1107–1118 (2004). ArticleCAS Google Scholar
Tohsato, Y., Matsuda, H. & Hashimoto, A. in Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB) 376–383 (2000). Google Scholar
Berg, J. & Lassig, M. Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA101, 14689–14694 (2004). ArticleCAS Google Scholar
Ogata, H., Fujibuchi, W., Goto, S. & Kanehisa, M. A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res.28, 4021–4028 (2000). ArticleCAS Google Scholar
Sharan, R., Ideker, T., Kelley, B., Shamir, R. & Karp, R.M. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol.12, 835–846 (2005). ArticleCAS Google Scholar
Suthram, S., Sittler, T. & Ideker, T. The Plasmodium protein network diverges from those of other eukaryotes. Nature438, 108–112 (2005). ArticleCAS Google Scholar
Koyuturk, M., Grama, A. & Szpankowski, W. in Proceedings of the Ninth Annual International Conference on Research in Computational Molecular Biology (RECOMB) 48–65 (2005). Google Scholar
Bandyopadhyay, S., Sharan, R. & Ideker, T. Systematic identification of functional orthologs based on protein network comparison. Genome Res.16, 428–435 (2006). ArticleCAS Google Scholar
Koyuturk, M., Grama, A. & Szpankowski, W. An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics20 suppl. 1, I200–I207 (2004). Article Google Scholar
Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science302, 249–255 (2003). ArticleCAS Google Scholar
Bader, G.D. et al. BIND-The biomolecular interaction network database. Nucleic Acids Res.29, 242–245 (2001). ArticleCAS Google Scholar
Xenarios, I. et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res.30, 303–305 (2002). ArticleCAS Google Scholar
Zanzoni, A. et al. MINT: a Molecular INTeraction database. FEBS Lett.513, 135–140 (2002). ArticleCAS Google Scholar
Breitkreutz, B.J., Stark, C. & Tyers, M. The GRID: the General Repository for Interaction Datasets. Genome Biol.4, R23 (2003). Article Google Scholar
Gunsalus, K.C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature436, 861–865 (2005). ArticleCAS Google Scholar
Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell9, 1133–1143 (2002). ArticleCAS Google Scholar
Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science302, 449–453 (2003). ArticleCAS Google Scholar
Lee, I., Date, S.V., Adai, A.T. & Marcotte, E.M. A probabilistic functional network of yeast genes. Science306, 1555–1558 (2004). ArticleCAS Google Scholar
Lu, L.J., Xia, Y., Paccanaro, A., Yu, H. & Gerstein, M. Assessing the limits of genomic data integration for predicting protein networks. Genome Res.15, 945–953 (2005). ArticleCAS Google Scholar
Wong, S.L. et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA101, 15682–15687 (2004). ArticleCAS Google Scholar
Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. USA101, 5934–5939 (2004). ArticleCAS Google Scholar
Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E. & Ziv-Ukelson, M. Alignment of metabolic pathways. Bioinformatics21, 3401–3408 (2005). ArticleCAS Google Scholar
Giugno, R. & Shasha, D. in Proceeding of the 16th International Conference on Pattern Recognition (ICPR) 112–115 (2002). Google Scholar
Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA93, 13–20 (1996). ArticleCAS Google Scholar
Berg, J., Lassig, M. & Wagner, A. Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol. Biol.4, 51 (2004). Article Google Scholar
Rzhetsky, A. & Gomez, S.M. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics17, 988–996 (2001). ArticleCAS Google Scholar
Barabasi, A.L. & Albert, R. Emergence of scaling in random networks. Science286, 509–512 (1999). ArticleCAS Google Scholar
Wagner, A. & Fell, D.A. The small world inside large metabolic networks. Proc. Biol. Sci.268, 1803–1810 (2001). ArticleCAS Google Scholar
Eisenberg, E. & Levanon, E.Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett.91, 138701 (2003). Article Google Scholar
Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.48, 443–453 (1970). ArticleCAS Google Scholar
Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCAS Google Scholar
Venter, J.C. et al. The sequence of the human genome. Science291, 1304–1351 (2001). ArticleCAS Google Scholar
Jukes, T.H. & Cantor, C.R. in Mammalian Protein Metabolism (ed. Munro, H.N.) 21–123 (Academic Press, New York, 1969). Book Google Scholar
Goehler, H. et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell15, 853–865 (2004). ArticleCAS Google Scholar
Calvano, S.E. et al. A network-based analysis of systemic inflammation in humans. Nature437, 1032–1037 (2005). ArticleCAS Google Scholar
Sanger, F. & Tuppy, H. The amino acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem. J.49, 463–481 (1951). ArticleCAS Google Scholar
Dayhoff, M.O., Schwartz, R.M. & Orcutt, B.C. A model of evolutionary change in proteins. in Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, (Dayhoff, M.O., ed.) 345–352 (National Biomedical Research Foundation, Silver Spring, MD, 1978). Google Scholar
Needleman, S.B. & Wunsch, C.D. A general method applicable to the search of similarities in the amino acid sequence of two proteins. J. Mol. Biol.48, 443–453 (1970). ArticleCAS Google Scholar
Smith, T.F. & Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol.147, 195–197 (1981). ArticleCAS Google Scholar
Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.157, 105–132 (1982). ArticleCAS Google Scholar
Stormo, G.D. & Hartzell, G.W. III. Identifying protein-binding sites from unaligned DNA fragments. Proc. Natl. Acad. Sci. USA86, 1183–1187 (1989). ArticleCAS Google Scholar
Taylor, W.R. Multiple sequence alignment by a pairwise algorithm. Comput. Appl. Biosci.3, 81–87 (1987). CASPubMed Google Scholar
Lipman, D.J., Altschul, S.F. & Kececioglu, J.D. A tool for multiple sequence alignment. Proc. Natl Acad. Sci. USA86, 4412–4415 (1989). ArticleCAS Google Scholar
Krogh, A., Brown, M., Mian, S., Sjolander, K. & Haussler, D. Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol.235, 1501–1531 (1994). ArticleCAS Google Scholar
Borodovsky, M. & McIninch, J. GENMARK: parallel gene recognition for both DNA strands. Comput. Chem.17, 123–133 (1993). ArticleCAS Google Scholar
Churchill, G.A. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol.51, 79–94 (1989). ArticleCAS Google Scholar
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science298, 824–827 (2002). ArticleCAS Google Scholar
Scott, J., Ideker, T., Karp, R.M. & Sharan, R. in Proceedings of the Ninth Annual International Conference on Research in Computational Molecular Biology (RECOMB) 1–13 (2005). Google Scholar
Alon, N., Yuster, R. & Zwick, U. Color-coding. J. ACM42, 844–856 (1995). Article Google Scholar