Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells (original) (raw)
References
Hoffman, L.M. & Carpenter, M.K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol.23, 699–708 (2005). ArticleCAS Google Scholar
Liew, C.G. et al. Human embryonic stem cells: possibilities for human cell transplantation. Ann. Med.37, 521–532 (2005). ArticleCAS Google Scholar
Bonner-Weir, S. & Weir, G.C. New sources of pancreatic beta-cells. Nat. Biotechnol.23, 857–861 (2005). ArticleCAS Google Scholar
Madsen, O.D. Stem cells and diabetes treatment. APMIS113, 858–875 (2005). Article Google Scholar
Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes50, 1691–1697 (2001). ArticleCAS Google Scholar
Segev, H., Fishman, B., Ziskind, A., Shulman, M. & Itskovitz-Eldor, J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells22, 265–274 (2004). ArticleCAS Google Scholar
Baharvand, H., Jafary, H., Massumi, M. & Ashtiani, S.K. Generation of insulin-secreting cells from human embryonic stem cells. Dev. Growth Differ.48, 323–332 (2006). ArticleCAS Google Scholar
Xu, X. et al. Endoderm and pancreatic islet lineage differentiation from human embryonic stem cells. Cloning Stem Cells8, 96–107 (2006). ArticleCAS Google Scholar
Kwon, Y.D. et al. Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol. Ther.12, 28–32 (2005). ArticleCAS Google Scholar
Hori, Y., Gu, X., Xie, X. & Kim, S.K. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med.2, e103 (2005). Article Google Scholar
Roche, E., Sepulcre, P., Reig, J.A., Santana, A. & Soria, B. Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. FASEB J.19, 1341–1343 (2005). ArticleCAS Google Scholar
Sipione, S., Eshpeter, A., Lyon, J.G., Korbutt, G.S. & Bleackley, R.C. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia47, 499–508 (2004). ArticleCAS Google Scholar
Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I. & Melton, D.A. Insulin staining of ES cell progeny from insulin uptake. Science299, 363 (2003). Google Scholar
Hansson, M. et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes53, 2603–2609 (2004). ArticleCAS Google Scholar
Tam, P.P., Williams, E.A. & Chan, W.Y. Gastrulation in the mouse embryo: ultrastructural and molecular aspects of germ layer morphogenesis. Microsc. Res. Tech.26, 301–328 (1993). ArticleCAS Google Scholar
Stafford, D., Hornbruch, A., Mueller, P.R. & Prince, V.E. A conserved role for retinoid signaling in vertebrate pancreas development. Dev. Genes Evol.214, 432–441 (2004). ArticleCAS Google Scholar
Lau, J., Kawahira, H. & Hebrok, M. Hedgehog signaling in pancreas development and disease. Cell. Mol. Life Sci.63, 642–652 (2006). ArticleCAS Google Scholar
Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development129, 2447–2457 (2002). CAS Google Scholar
Wilson, M.E., Scheel, D. & German, M.S. Gene expression cascades in pancreatic development. Mech. Dev.120, 65–80 (2003). ArticleCAS Google Scholar
Bhushan, A. et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development128, 5109–5117 (2001). CAS Google Scholar
Murtaugh, L.C. & Melton, D.A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol.19, 71–89 (2003). ArticleCAS Google Scholar
Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn.229, 176–200 (2004). ArticleCAS Google Scholar
D'Amour, K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol.23, 1534–1541 (2005). ArticleCAS Google Scholar
Yamaguchi, T.P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol.11, R713–R724 (2001). ArticleCAS Google Scholar
Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development129, 2367–2379 (2002). CAS Google Scholar
Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol.23, 1542–1550 (2005). ArticleCAS Google Scholar
McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol.213, 442–456 (1999). ArticleCAS Google Scholar
Sasaki, H. & Hogan, B.L. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development118, 47–59 (1993). CAS Google Scholar
Biben, C. et al. Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev. Biol.194, 135–151 (1998). ArticleCAS Google Scholar
Barbacci, E. et al. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development126, 4795–4805 (1999). CAS Google Scholar
Coffinier, C., Barra, J., Babinet, C. & Yaniv, M. Expression of the vHNF1/HNF1β homeoprotein gene during mouse organogenesis. Mech. Dev.89, 211–213 (1999). ArticleCAS Google Scholar
Duncan, S.A. et al. Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc. Natl. Acad. Sci. USA91, 7598–7602 (1994). ArticleCAS Google Scholar
Sun, Z. & Hopkins, N. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev.15, 3217–3229 (2001). ArticleCAS Google Scholar
Chen, Y. et al. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev. Biol.271, 144–160 (2004). ArticleCAS Google Scholar
Stafford, D. & Prince, V.E. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol.12, 1215–1220 (2002). ArticleCAS Google Scholar
Molotkov, A., Molotkova, N. & Duester, G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev. Dyn.232, 950–957 (2005). ArticleCAS Google Scholar
Martin, M. et al. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol.284, 399–411 (2005). ArticleCAS Google Scholar
Hebrok, M., Kim, S.K. & Melton, D.A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev.12, 1705–1713 (1998). ArticleCAS Google Scholar
Rindi, G., Leiter, A.B., Kopin, A.S., Bordi, C. & Solcia, E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann. NY Acad. Sci.1014, 1–12 (2004). ArticleCAS Google Scholar
Tomita, T. New markers for pancreatic islets and islet cell tumors. Pathol. Int.52, 425–432 (2002). Article Google Scholar
Latif, Z.A., Noel, J. & Alejandro, R. A simple method of staining fresh and cultured islets. Transplantation45, 827–830 (1988). ArticleCAS Google Scholar
Frederickson, C. Imaging zinc: old and new tools. Sci. STKE2003, pe18 (2003). Google Scholar
Sturgess, N.C., Ashford, M.L., Cook, D.L. & Hales, C.N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet2, 474–475 (1985). ArticleCAS Google Scholar
Misler, S. et al. Stimulus-secretion coupling in beta-cells of transplantable human islets of Langerhans. Evidence for a critical role for Ca2+ entry. Diabetes41, 662–670 (1992). ArticleCAS Google Scholar
Pyne, N.J. & Furman, B.L. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia46, 1179–1189 (2003). ArticleCAS Google Scholar
Prentki, M. & Matschinsky, F.M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol. Rev.67, 1185–1248 (1987). ArticleCAS Google Scholar
Klimstra, D.S. Pancreas. in Histology for Pathologists (ed. Sternberg, S.S.) 613–647 (Lippincott-Raven Publishers, Philadelphia, 1997). Google Scholar
McLean, A.B. et al. Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when PI3K signaling is suppressed. Stem Cells (in the press).
Hart, A., Papadopoulou, S. & Edlund, H. Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn.228, 185–193 (2003). ArticleCAS Google Scholar
Ye, F., Duvillie, B. & Scharfmann, R. Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia48, 277–281 (2005). ArticleCAS Google Scholar
Jacquemin, P. et al. An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev. Biol.290, 189–199 (2006). ArticleCAS Google Scholar
Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature371, 606–609 (1994). ArticleCAS Google Scholar
Jacquemin, P., Lemaigre, F.P. & Rousseau, G.G. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev. Biol.258, 105–116 (2003). ArticleCAS Google Scholar
Harrison, K.A., Thaler, J., Pfaff, S.L., Gu, H. & Kehrl, J.H. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in _Hlxb9_-deficient mice. Nat. Genet.23, 71–75 (1999). ArticleCAS Google Scholar
Li, H., Arber, S., Jessell, T.M. & Edlund, H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat. Genet.23, 67–70 (1999). ArticleCAS Google Scholar
Schwitzgebel, V.M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development127, 3533–3542 (2000). CAS Google Scholar
Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA97, 1607–1611 (2000). ArticleCAS Google Scholar
Teitelman, G., Alpert, S., Polak, J.M., Martinez, A. & Hanahan, D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development118, 1031–1039 (1993). CAS Google Scholar
Polak, M., Bouchareb-Banaei, L., Scharfmann, R. & Czernichow, P. Early pattern of differentiation in the human pancreas. Diabetes49, 225–232 (2000). ArticleCAS Google Scholar
De Krijger, R.R. et al. The midgestational human fetal pancreas contains cells coexpressing islet hormones. Dev. Biol.153, 368–375 (1992). ArticleCAS Google Scholar
Herrera, P.L., Nepote, V. & Delacour, A. Pancreatic cell lineage analyses in mice. Endocrine19, 267–278 (2002). ArticleCAS Google Scholar
Slack, J.M. Developmental biology of the pancreas. Development121, 1569–1580 (1995). CAS Google Scholar
Pictet, R.L. & Rutter, W.J. Development of the embryonic endocrine pancreas. in Handbook of Physiology (eds. Steiner, D.F. & Frenkel, N.) 25–66 (Williams and Wilkins, Washington, DC, 1972). Google Scholar
Schisler, J.C. et al. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc. Natl. Acad. Sci. USA102, 7297–7302 (2005). ArticleCAS Google Scholar
Nishimura, W. et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev. Biol.293, 526–539 (2006). ArticleCAS Google Scholar
Demeterco, C., Beattie, G.M., Dib, S.A., Lopez, A.D. & Hayek, A. A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. J. Clin. Endocrinol. Metab.85, 3892–3897 (2000). CAS Google Scholar
Hayek, A. & Beattie, G.M. Experimental transplantation of human fetal and adult pancreatic islets. J. Clin. Endocrinol. Metab.82, 2471–2475 (1997). CAS Google Scholar
Beattie, G.M., Butler, C. & Hayek, A. Morphology and function of cultured human fetal pancreatic cells transplanted into athymic mice: a longitudinal study. Cell Transplant.3, 421–425 (1994). ArticleCAS Google Scholar
Kanai, Y. et al. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. J. Cell Biol.133, 667–681 (1996). ArticleCAS Google Scholar