Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells (original) (raw)

References

  1. Hoffman, L.M. & Carpenter, M.K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708 (2005).
    Article CAS Google Scholar
  2. Liew, C.G. et al. Human embryonic stem cells: possibilities for human cell transplantation. Ann. Med. 37, 521–532 (2005).
    Article CAS Google Scholar
  3. Bonner-Weir, S. & Weir, G.C. New sources of pancreatic beta-cells. Nat. Biotechnol. 23, 857–861 (2005).
    Article CAS Google Scholar
  4. Madsen, O.D. Stem cells and diabetes treatment. APMIS 113, 858–875 (2005).
    Article Google Scholar
  5. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).
    Article CAS Google Scholar
  6. Segev, H., Fishman, B., Ziskind, A., Shulman, M. & Itskovitz-Eldor, J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22, 265–274 (2004).
    Article CAS Google Scholar
  7. Baharvand, H., Jafary, H., Massumi, M. & Ashtiani, S.K. Generation of insulin-secreting cells from human embryonic stem cells. Dev. Growth Differ. 48, 323–332 (2006).
    Article CAS Google Scholar
  8. Xu, X. et al. Endoderm and pancreatic islet lineage differentiation from human embryonic stem cells. Cloning Stem Cells 8, 96–107 (2006).
    Article CAS Google Scholar
  9. Kwon, Y.D. et al. Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol. Ther. 12, 28–32 (2005).
    Article CAS Google Scholar
  10. Hori, Y., Gu, X., Xie, X. & Kim, S.K. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med. 2, e103 (2005).
    Article Google Scholar
  11. Roche, E., Sepulcre, P., Reig, J.A., Santana, A. & Soria, B. Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. FASEB J. 19, 1341–1343 (2005).
    Article CAS Google Scholar
  12. Sipione, S., Eshpeter, A., Lyon, J.G., Korbutt, G.S. & Bleackley, R.C. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 47, 499–508 (2004).
    Article CAS Google Scholar
  13. Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I. & Melton, D.A. Insulin staining of ES cell progeny from insulin uptake. Science 299, 363 (2003).
    Google Scholar
  14. Hansson, M. et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53, 2603–2609 (2004).
    Article CAS Google Scholar
  15. Tam, P.P., Williams, E.A. & Chan, W.Y. Gastrulation in the mouse embryo: ultrastructural and molecular aspects of germ layer morphogenesis. Microsc. Res. Tech. 26, 301–328 (1993).
    Article CAS Google Scholar
  16. Wells, J.M. & Melton, D.A. Vertebrate endoderm development. Annu. Rev. Cell Dev. Biol. 15, 393–410 (1999).
    Article CAS Google Scholar
  17. Stafford, D., Hornbruch, A., Mueller, P.R. & Prince, V.E. A conserved role for retinoid signaling in vertebrate pancreas development. Dev. Genes Evol. 214, 432–441 (2004).
    Article CAS Google Scholar
  18. Lau, J., Kawahira, H. & Hebrok, M. Hedgehog signaling in pancreas development and disease. Cell. Mol. Life Sci. 63, 642–652 (2006).
    Article CAS Google Scholar
  19. Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).
    CAS Google Scholar
  20. Wilson, M.E., Scheel, D. & German, M.S. Gene expression cascades in pancreatic development. Mech. Dev. 120, 65–80 (2003).
    Article CAS Google Scholar
  21. Bhushan, A. et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128, 5109–5117 (2001).
    CAS Google Scholar
  22. Murtaugh, L.C. & Melton, D.A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol. 19, 71–89 (2003).
    Article CAS Google Scholar
  23. Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn. 229, 176–200 (2004).
    Article CAS Google Scholar
  24. D'Amour, K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).
    Article CAS Google Scholar
  25. Yamaguchi, T.P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol. 11, R713–R724 (2001).
    Article CAS Google Scholar
  26. Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129, 2367–2379 (2002).
    CAS Google Scholar
  27. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23, 1542–1550 (2005).
    Article CAS Google Scholar
  28. McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213, 442–456 (1999).
    Article CAS Google Scholar
  29. Sasaki, H. & Hogan, B.L. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47–59 (1993).
    CAS Google Scholar
  30. Biben, C. et al. Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev. Biol. 194, 135–151 (1998).
    Article CAS Google Scholar
  31. Barbacci, E. et al. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 126, 4795–4805 (1999).
    CAS Google Scholar
  32. Coffinier, C., Barra, J., Babinet, C. & Yaniv, M. Expression of the vHNF1/HNF1β homeoprotein gene during mouse organogenesis. Mech. Dev. 89, 211–213 (1999).
    Article CAS Google Scholar
  33. Duncan, S.A. et al. Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc. Natl. Acad. Sci. USA 91, 7598–7602 (1994).
    Article CAS Google Scholar
  34. Sun, Z. & Hopkins, N. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev. 15, 3217–3229 (2001).
    Article CAS Google Scholar
  35. Chen, Y. et al. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev. Biol. 271, 144–160 (2004).
    Article CAS Google Scholar
  36. Stafford, D. & Prince, V.E. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol. 12, 1215–1220 (2002).
    Article CAS Google Scholar
  37. Molotkov, A., Molotkova, N. & Duester, G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev. Dyn. 232, 950–957 (2005).
    Article CAS Google Scholar
  38. Martin, M. et al. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol. 284, 399–411 (2005).
    Article CAS Google Scholar
  39. Hebrok, M., Kim, S.K. & Melton, D.A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713 (1998).
    Article CAS Google Scholar
  40. Rindi, G., Leiter, A.B., Kopin, A.S., Bordi, C. & Solcia, E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann. NY Acad. Sci. 1014, 1–12 (2004).
    Article CAS Google Scholar
  41. Tomita, T. New markers for pancreatic islets and islet cell tumors. Pathol. Int. 52, 425–432 (2002).
    Article Google Scholar
  42. Latif, Z.A., Noel, J. & Alejandro, R. A simple method of staining fresh and cultured islets. Transplantation 45, 827–830 (1988).
    Article CAS Google Scholar
  43. Frederickson, C. Imaging zinc: old and new tools. Sci. STKE 2003, pe18 (2003).
    Google Scholar
  44. Sturgess, N.C., Ashford, M.L., Cook, D.L. & Hales, C.N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2, 474–475 (1985).
    Article CAS Google Scholar
  45. Misler, S. et al. Stimulus-secretion coupling in beta-cells of transplantable human islets of Langerhans. Evidence for a critical role for Ca2+ entry. Diabetes 41, 662–670 (1992).
    Article CAS Google Scholar
  46. Pyne, N.J. & Furman, B.L. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46, 1179–1189 (2003).
    Article CAS Google Scholar
  47. Prentki, M. & Matschinsky, F.M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol. Rev. 67, 1185–1248 (1987).
    Article CAS Google Scholar
  48. Klimstra, D.S. Pancreas. in Histology for Pathologists (ed. Sternberg, S.S.) 613–647 (Lippincott-Raven Publishers, Philadelphia, 1997).
    Google Scholar
  49. McLean, A.B. et al. Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when PI3K signaling is suppressed. Stem Cells (in the press).
  50. Hart, A., Papadopoulou, S. & Edlund, H. Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn. 228, 185–193 (2003).
    Article CAS Google Scholar
  51. Ye, F., Duvillie, B. & Scharfmann, R. Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia 48, 277–281 (2005).
    Article CAS Google Scholar
  52. Jacquemin, P. et al. An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev. Biol. 290, 189–199 (2006).
    Article CAS Google Scholar
  53. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).
    Article CAS Google Scholar
  54. Jacquemin, P., Lemaigre, F.P. & Rousseau, G.G. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev. Biol. 258, 105–116 (2003).
    Article CAS Google Scholar
  55. Harrison, K.A., Thaler, J., Pfaff, S.L., Gu, H. & Kehrl, J.H. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in _Hlxb9_-deficient mice. Nat. Genet. 23, 71–75 (1999).
    Article CAS Google Scholar
  56. Li, H., Arber, S., Jessell, T.M. & Edlund, H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat. Genet. 23, 67–70 (1999).
    Article CAS Google Scholar
  57. Schwitzgebel, V.M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542 (2000).
    CAS Google Scholar
  58. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611 (2000).
    Article CAS Google Scholar
  59. Teitelman, G., Alpert, S., Polak, J.M., Martinez, A. & Hanahan, D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 118, 1031–1039 (1993).
    CAS Google Scholar
  60. Polak, M., Bouchareb-Banaei, L., Scharfmann, R. & Czernichow, P. Early pattern of differentiation in the human pancreas. Diabetes 49, 225–232 (2000).
    Article CAS Google Scholar
  61. De Krijger, R.R. et al. The midgestational human fetal pancreas contains cells coexpressing islet hormones. Dev. Biol. 153, 368–375 (1992).
    Article CAS Google Scholar
  62. Herrera, P.L., Nepote, V. & Delacour, A. Pancreatic cell lineage analyses in mice. Endocrine 19, 267–278 (2002).
    Article CAS Google Scholar
  63. Slack, J.M. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).
    CAS Google Scholar
  64. Pictet, R.L. & Rutter, W.J. Development of the embryonic endocrine pancreas. in Handbook of Physiology (eds. Steiner, D.F. & Frenkel, N.) 25–66 (Williams and Wilkins, Washington, DC, 1972).
    Google Scholar
  65. Schisler, J.C. et al. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc. Natl. Acad. Sci. USA 102, 7297–7302 (2005).
    Article CAS Google Scholar
  66. Nishimura, W. et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev. Biol. 293, 526–539 (2006).
    Article CAS Google Scholar
  67. Demeterco, C., Beattie, G.M., Dib, S.A., Lopez, A.D. & Hayek, A. A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. J. Clin. Endocrinol. Metab. 85, 3892–3897 (2000).
    CAS Google Scholar
  68. Hayek, A. & Beattie, G.M. Experimental transplantation of human fetal and adult pancreatic islets. J. Clin. Endocrinol. Metab. 82, 2471–2475 (1997).
    CAS Google Scholar
  69. Beattie, G.M., Butler, C. & Hayek, A. Morphology and function of cultured human fetal pancreatic cells transplanted into athymic mice: a longitudinal study. Cell Transplant. 3, 421–425 (1994).
    Article CAS Google Scholar
  70. Kanai, Y. et al. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. J. Cell Biol. 133, 667–681 (1996).
    Article CAS Google Scholar

Download references