Efficient differentiation of human embryonic stem cells to definitive endoderm (original) (raw)
Lu, C.C., Brennan, J. & Robertson, E.J. From fertilization to gastrulation: axis formation in the mouse embryo. Curr. Opin. Genet. Dev.11, 384–392 (2001). ArticleCASPubMed Google Scholar
Robb, L. & Tam, P.P. Gastrula organiser and embryonic patterning in the mouse. Semin. Cell Dev. Biol.15, 543–554 (2004). ArticleCASPubMed Google Scholar
Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev.120, 1351–1383 (2003). ArticleCASPubMed Google Scholar
Haegel, H. et al. Lack of beta-catenin affects mouse development at gastrulation. Development121, 3529–3537 (1995). CASPubMed Google Scholar
Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet.22, 361–365 (1999). ArticleCASPubMed Google Scholar
Kelly, O.G., Pinson, K.I. & Skarnes, W.C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development131, 2803–2815 (2004). ArticleCASPubMed Google Scholar
Conlon, F.L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development120, 1919–1928 (1994). CASPubMed Google Scholar
Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature411, 965–969 (2001). ArticleCASPubMed Google Scholar
Lowe, L.A., Yamada, S. & Kuehn, M.R. Genetic dissection of nodal function in patterning the mouse embryo. Development128, 1831–1843 (2001). CASPubMed Google Scholar
Vincent, S.D., Dunn, N.R., Hayashi, S., Norris, D.P. & Robertson, E.J. Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev.17, 1646–1662 (2003). ArticleCASPubMedPubMed Central Google Scholar
de Caestecker, M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev.15, 1–11 (2004). ArticleCASPubMed Google Scholar
Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development131, 1651–1662 (2004). ArticleCASPubMed Google Scholar
Sasaki, H. & Hogan, B.L. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development118, 47–59 (1993). CASPubMed Google Scholar
Ang, S.L. et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development119, 1301–1315 (1993). CASPubMed Google Scholar
Monaghan, A.P., Kaestner, K.H., Grau, E. & Schutz, G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development119, 567–578 (1993). CASPubMed Google Scholar
McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol.213, 442–456 (1999). ArticleCASPubMed Google Scholar
Stainier, D.Y. A glimpse into the molecular entrails of endoderm formation. Genes Dev.16, 893–907 (2002). ArticleCASPubMed Google Scholar
Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development129, 2367–2379 (2002). CASPubMed Google Scholar
Blum, M. et al. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell69, 1097–1106 (1992). ArticleCASPubMed Google Scholar
Hart, A.H. et al. Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development129, 3597–3608 (2002). CASPubMed Google Scholar
Pearce, J.J. & Evans, M.J. Mml, a mouse Mix-like gene expressed in the primitive streak. Mech. Dev.87, 189–192 (1999). ArticleCASPubMed Google Scholar
Wilkinson, D.G., Bhatt, S. & Herrmann, B.G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature343, 657–659 (1990). ArticleCASPubMed Google Scholar
Candia, A.F. et al. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development116, 1123–1136 (1992). CASPubMed Google Scholar
Candia, A.F. & Wright, C.V. Differential localization of Mox-1 and Mox-2 proteins indicates distinct roles during development. Int. J. Dev. Biol.40, 1179–1184 (1996). CASPubMed Google Scholar
Pevny, L.H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for SOX1 in neural determination. Development125, 1967–1978 (1998). CASPubMed Google Scholar
Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol.182, 299–313 (1997). ArticleCASPubMed Google Scholar
Elms, P. et al. Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr. Patterns4, 505–511 (2004). ArticleCASPubMed Google Scholar
Xu, R.H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol.20, 1261–1264 (2002). ArticleCASPubMed Google Scholar
Pera, M.F. et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci.117, 1269–1280 (2004). ArticleCASPubMed Google Scholar
Yamaguchi, T.P., Harpal, K., Henkemeyer, M. & Rossant, J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev.8, 3032–3044 (1994). ArticleCASPubMed Google Scholar
Deng, C.X. et al. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev.8, 3045–3057 (1994). ArticleCASPubMed Google Scholar
Sun, X., Meyers, E.N., Lewandoski, M. & Martin, G.R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev.13, 1834–1846 (1999). ArticleCASPubMedPubMed Central Google Scholar
Barnes, J.D., Crosby, J.L., Jones, C.M., Wright, C.V. & Hogan, B.L. Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev. Biol.161, 168–178 (1994). ArticlePubMed Google Scholar
Shawlot, W. & Behringer, R.R. Requirement for Lim1 in head-organizer function. Nature374, 425–430 (1995). ArticleCASPubMed Google Scholar
Niswander, L. & Martin, G.R. Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development114, 755–768 (1992). CASPubMed Google Scholar
Rappolee, D.A., Basilico, C., Patel, Y. & Werb, Z. Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development120, 2259–2269 (1994). CASPubMed Google Scholar
Belo, J.A. et al. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev.68, 45–57 (1997). ArticleCASPubMed Google Scholar
Biben, C. et al. Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev. Biol.194, 135–151 (1998). ArticleCASPubMed Google Scholar
Shawlot, W., Deng, J.M. & Behringer, R.R. Expression of the mouse cerberus-related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. Proc. Natl. Acad. Sci. USA95, 6198–6203 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pearce, J.J., Penny, G. & Rossant, J. A mouse cerberus/Dan-related gene family. Dev. Biol.209, 98–110 (1999). ArticleCASPubMed Google Scholar
Mahlapuu, M., Ormestad, M., Enerback, S. & Carlsson, P. The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development128, 155–166 (2001). CASPubMed Google Scholar
Ormestad, M., Astorga, J. & Carlsson, P. Differences in the embryonic expression patterns of mouse Foxf1 and -2 match their distinct mutant phenotypes. Dev. Dyn.229, 328–333 (2004). ArticleCASPubMed Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCASPubMed Google Scholar
Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev.9, 2105–2116 (1995). ArticleCASPubMed Google Scholar
Meyer, B.I. & Gruss, P. Mouse Cdx-1 expression during gastrulation. Development117, 191–203 (1993). CASPubMed Google Scholar
McGrath, K.E. & Palis, J. Expression of homeobox genes, including an insulin promoting factor, in the murine yolk sac at the time of hematopoietic initiation. Mol. Reprod. Dev.48, 145–153 (1997). ArticleCASPubMed Google Scholar
Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development132, 2093–2102 (2005). ArticleCASPubMed Google Scholar
Lacroix, M.C., Guibourdenche, J., Frendo, J.L., Pidoux, G. & Evain-Brion, D. Placental growth hormones. Endocrine19, 73–79 (2002). ArticleCASPubMed Google Scholar
Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol.2, 84–89 (2000). ArticleCASPubMed Google Scholar
Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature320, 447–449 (1986). ArticleCASPubMed Google Scholar
Radice, G.L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol.181, 64–78 (1997). ArticleCASPubMed Google Scholar
Dziadek, M.A. & Andrews, G.K. Tissue specificity of alpha-fetoprotein messenger RNA expression during mouse embryogenesis. EMBO J.2, 549–554 (1983). ArticleCASPubMedPubMed Central Google Scholar
Weiler-Guettler, H., Aird, W.C., Rayburn, H., Husain, M. & Rosenberg, R.D. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development122, 2271–2281 (1996). CASPubMed Google Scholar
Ciruna, B.G., Schwartz, L., Harpal, K., Yamaguchi, T.P. & Rossant, J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development124, 2829–2841 (1997). CASPubMed Google Scholar
Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development132, 4363–4374 (2005). ArticleCASPubMed Google Scholar
Wei, C.L. et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells23, 166–185 (2005). ArticleCASPubMed Google Scholar
Vallier, L., Reynolds, D. & Pedersen, R.A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol.275, 403–421 (2004). ArticleCASPubMed Google Scholar
Amit, M., Shariki, C., Margulets, V. & Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod.70, 837–845 (2004). ArticleCASPubMed Google Scholar
Beattie, G.M. et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells23, 489–495 (2005). ArticleCASPubMed Google Scholar
James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development132, 1273–1282 (2005). ArticleCASPubMed Google Scholar