- Longley, D.B. & Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005).
Article CAS Google Scholar
- Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64, 8249–8255 (2004).
Article CAS Google Scholar
- Pelham, R.J. et al. Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proc. Natl. Acad. Sci. USA 103, 19848–19853 (2006).
Article CAS Google Scholar
- Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).
Article CAS Google Scholar
- Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).
Article CAS Google Scholar
- Gerber, H.P. & Ferrara, N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 65, 671–680 (2005).
CAS Google Scholar
- Casanovas, O., Hicklin, D.J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).
Article CAS Google Scholar
- Kerbel, R.S. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev. 20, 79–86 (2001).
Article CAS Google Scholar
- Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).
Article CAS Google Scholar
- Albini, A., Tosetti, F., Benelli, R. & Noonan, D.M. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res. 65, 10637–10641 (2005).
Article CAS Google Scholar
- Wald, M. et al. Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother. Pharmacol. 47 Suppl, S16–S22 (2001).
Article CAS Google Scholar
- Ho, R.L. et al. Immunological responses critical to the therapeutic effects of adriamycin plus interleukin 2 in C57BL/6 mice bearing syngeneic EL4 lymphoma. Oncol. Res. 5, 363–372 (1993).
CAS PubMed Google Scholar
- Liu, Y., Zhang, W., Chan, T., Saxena, A. & Xiang, J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk. Res. 26, 757–763 (2002).
Article CAS Google Scholar
- Bobek, V. et al. Syngeneic lymph-node-targeting model of green fluorescent protein-expressing Lewis lung carcinoma. Clin. Exp. Metastasis 21, 705–708 (2004).
Article CAS Google Scholar
- Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).
Article CAS Google Scholar
- Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).
Article CAS Google Scholar
- Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).
Article CAS Google Scholar
- Morrison, S.J., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).
Article CAS Google Scholar
- Onai, N. et al. Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96, 2074–2080 (2000).
CAS PubMed Google Scholar
- Kusmartsev, S. & Gabrilovich, D.I. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol. Immunother. 51, 293–298 (2002).
Article CAS Google Scholar
- Bronte, V. et al. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96, 3838–3846 (2000).
CAS PubMed PubMed Central Google Scholar
- Hestdal, K. et al. Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells. J. Immunol. 147, 22–28 (1991).
CAS PubMed Google Scholar
- Davis-Smyth, T., Chen, H., Park, J., Presta, L.G. & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15, 4919–4927 (1996).
Article CAS Google Scholar
- Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4, 336–340 (1998).
Article CAS Google Scholar
- Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393–11398 (2002).
Article CAS Google Scholar
- Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).
CAS PubMed Google Scholar
- Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).
Article CAS Google Scholar
- Lazarovici, P., Gazit, A., Staniszewska, I., Marcinkiewicz, C. & Lelkes, P.I. Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane. Endothelium 13, 51–59 (2006).
Article CAS Google Scholar
- Favre, C.J. et al. Expression of genes involved in vascular development and angiogenesis in endothelial cells of adult lung. Am. J. Physiol. Heart Circ. Physiol. 285, H1917–H1938 (2003).
Article CAS Google Scholar
- Good, D.J. et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87, 6624–6628 (1990).
Article CAS Google Scholar
- Palmer-Crocker, R.L., Hughes, C.C. & Pober, J.S. IL-4 and IL-13 activate the JAK2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the gamma c chain. J. Clin. Invest. 98, 604–609 (1996).
Article CAS Google Scholar
- Roy, B. et al. IL-13 signal transduction in human monocytes: phosphorylation of receptor components, association with Jaks, and phosphorylation/activation of Stats. J. Leukoc. Biol. 72, 580–589 (2002).
CAS PubMed Google Scholar
- Edfeldt, K., Swedenborg, J., Hansson, G.K. & Yan, Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158–1161 (2002).
Article CAS Google Scholar
- Rapoport, A.P., Abboud, C.N. & DiPersio, J.F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF): receptor biology, signal transduction, and neutrophil activation. Blood Rev. 6, 43–57 (1992).
Article CAS Google Scholar
- Lechmann, M., Berchtold, S., Hauber, J. & Steinkasserer, A. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol. 23, 273–275 (2002).
Article CAS Google Scholar
- Feau, S. et al. Dendritic cell-derived IL-2 production is regulated by IL-15 in humans and in mice. Blood 105, 697–702 (2005).
Article CAS Google Scholar
- Niess, J.H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).
Article CAS Google Scholar
- Derynck, R., Akhurst, R.J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001).
Article CAS Google Scholar
- Leonard, E.J., Skeel, A., Yoshimura, T. & Rankin, J. Secretion of monocyte chemoattractant protein-1 (MCP-1) by human mononuclear phagocytes. Adv. Exp. Med. Biol. 351, 55–64 (1993).
Article CAS Google Scholar
- Cook, D.N. The role of MIP-1 alpha in inflammation and hematopoiesis. J. Leukoc. Biol. 59, 61–66 (1996).
Article CAS Google Scholar
- Dinarello, C.A. Blocking IL-1 in systemic inflammation. J. Exp. Med. 201, 1355–1359 (2005).
Article CAS Google Scholar
- Lemoli, R.M. et al. Proliferative response of human acute myeloid leukemia cells and normal marrow enriched progenitor cells to human recombinant growth factors IL-3, GM-CSF and G-CSF alone and in combination. Leukemia 5, 386–391 (1991).
CAS PubMed Google Scholar
- Ferrara, N., Hillan, K.J., Gerber, H.P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).
Article CAS Google Scholar
- Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).
Article CAS Google Scholar
- Di Maio, M. et al. Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: a pooled analysis of three randomised trials. Lancet Oncol. 6, 669–677 (2005).
Article CAS Google Scholar
- Liang, W.C. et al. Cross-species VEGF-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal vegf. J. Biol. Chem. 281, 951–961 (2006).
Article CAS Google Scholar
- Dong, J. et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 23, 2800–2810 (2004).
Article CAS Google Scholar
- Malik, A.K. et al. Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice. Blood 107, 550–557 (2006).
Article CAS Google Scholar
- Gerber, H.P., Kowalski, J., Sherman, D., Eberhard, D.A. & Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 60, 6253–6258 (2000).
CAS PubMed Google Scholar
- Gerber, H.P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).
Article CAS Google Scholar