Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer (original) (raw)
Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nature Rev. Cancer2, 795–803 (2002). ArticleCAS Google Scholar
Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol.42, 891–899 (1939). Google Scholar
Algire, G. H., Chalkley, H. W., Legallais, F. Y. & Park, H. D. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl Cancer Inst.6, 73–85 (1945). Article Google Scholar
Greenblatt, M. & Shubick, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl Cancer Inst.41, 111–124 (1968). CASPubMed Google Scholar
Ehrmann, R. L. & Knoth, M. Choriocarcinoma. Transfilter stimulation of vasoproliferation in the hamster cheek pouch. Studied by light and electron microscopy. J. Natl. Cancer Inst.41, 1329–1341 (1968). CASPubMed Google Scholar
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285, 1182–1186 (1971). ArticleCASPubMed Google Scholar
Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med.133, 275–288 (1971). ArticleCASPubMedPubMed Central Google Scholar
Gullino, P. M. Angiogenesis and oncogenesis. J. Natl Cancer Inst.61, 639–643 (1978). CASPubMed Google Scholar
Klagsbrun, M. & D'Amore, P. A. Regulators of angiogenesis. Annu. Rev. Physiol.53, 217–239 (1991). ArticleCASPubMed Google Scholar
Gospodarowicz, D., Ferrara, N., Schweigerer, L. & Neufeld, G. Structural characterization and biological functions of fibroblast growth factor. Endocrin. Rev.8, 95–114 (1987). ArticleCAS Google Scholar
Matsuzaki, K., Yoshitake, Y., Matuo, Y., Sasaki, H. & Nishikawa, K. Monoclonal antibodies against heparin-binding growth factor II/basic fibroblast growth factor that block its biological activity: invalidity of the antibodies for tumor angiogenesis. Proc. Natl Acad. Sci. USA86, 9911–9915 (1989). ArticleCASPubMedPubMed Central Google Scholar
Dennis, P. A. & Rifkin, D. B. Studies on the role of basic fibroblast growth factor in vivo: inability of neutralizing antibodies to block tumor growth. J. Cell. Physiol.144, 84–98 (1990). ArticleCASPubMed Google Scholar
Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl Acad. Sci. USA88, 9267–9271 (1991). ArticleCASPubMedPubMed Central Google Scholar
Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl Acad. Sci. USA93, 2576–2581 (1996). ArticleCASPubMedPubMed Central Google Scholar
Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR–2) receptor tyrosine kinases. EMBO J.15, 1751 (1996). ArticleCASPubMedPubMed Central Google Scholar
Orlandini, M., Marconcini, L., Ferruzzi, R. & Oliviero, S. Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl Acad. Sci. USA93, 11675–11680 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med.9, 669–676 (2003). ArticleCASPubMed Google Scholar
Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nature Rev. Cancer2, 573–583 (2002). ArticleCAS Google Scholar
Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science219, 983–985 (1983). ArticleCASPubMed Google Scholar
Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun.161, 851–858 (1989). ArticleCASPubMed Google Scholar
Connolly, D. T. et al. Human vascular permeability factor. Isolation from U937 cells. J. Biol. Chem.264, 20017–20024 (1989). ArticleCASPubMed Google Scholar
Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science246, 1306–1309 (1989). ArticleCASPubMed Google Scholar
Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science246, 1309–1312 (1989). ArticleCASPubMed Google Scholar
Houck, K. A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol.5, 1806–1814 (1991). ArticleCASPubMed Google Scholar
Tischer, E. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem.266, 11947–11954 (1991). ArticleCASPubMed Google Scholar
Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem.267, 26031–26037 (1992). ArticleCASPubMed Google Scholar
Park, J. E., Keller, G. -A. & Ferrara, N. The vascular endothelial growth factor isoforms (VEGF): differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell4, 1317–1326 (1993). ArticleCASPubMedPubMed Central Google Scholar
Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev.16, 2684–2698 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocrin. Rev. (in the press).
Keyt, B. A. et al. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem.271, 7788–7795 (1996). ArticleCASPubMed Google Scholar
Pepper, M. S. Extracellular proteolysis and angiogenesis. Thromb. Haemost.86, 346–355 (2001). ArticleCASPubMed Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol.2, 737–744 (2000). ArticleCASPubMed Google Scholar
Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocrin. Rev.18, 4–25 (1997). ArticleCAS Google Scholar
Plouet, J., Schilling, J. & Gospodarowicz, D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J.8, 3801–3808 (1989). ArticleCASPubMedPubMed Central Google Scholar
Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol.20, 4368–4380 (2002). ArticleCASPubMed Google Scholar
Melder, R. J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med.2, 992–997 (1996). ArticleCASPubMed Google Scholar
Gerber, H. P. et al. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem.273, 30366–30343 (1998). Article Google Scholar
Gerber, H. P., Dixit, V. & Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem.273, 13313–13316 (1998). ArticleCASPubMed Google Scholar
Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA93, 14765–14770 (1996). ArticleCASPubMedPubMed Central Google Scholar
Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest.103, 159–165 (1999). ArticleCASPubMedPubMed Central Google Scholar
Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nature Rev. Genet.4, 710–720 (2003). ArticleCASPubMed Google Scholar
Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene5, 519–524 (1990). CASPubMed Google Scholar
de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science255, 989–991 (1992). ArticleCASPubMed Google Scholar
Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun.187, 1579–1586 (1992). ArticleCASPubMed Google Scholar
Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell72, 835–846 (1993). ArticleCASPubMed Google Scholar
Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N. & Williams, L. T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl Acad. Sci. USA90, 7533–7537 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature376, 66–70 (1995). ArticleCASPubMed Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCASPubMed Google Scholar
Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem.269, 25646–25654 (1994). ArticleCASPubMed Google Scholar
Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature Med.8, 841–849 (2002). ArticleCASPubMed Google Scholar
Gerber, H. -P. et al. Vascular endothelial growth factor regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature417, 954–958 (2002). ArticleCASPubMed Google Scholar
Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood87, 3336–3343 (1996). ArticleCASPubMed Google Scholar
Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Med.8, 831–840 (2002). ArticleCASPubMed Google Scholar
Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell2, 289–300 (2002). ArticleCASPubMed Google Scholar
LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science299, 890–893 (2003). ArticleCASPubMed Google Scholar
Autiero, M., Luttun, A., Tjwa, M. & Carmeliet, P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J. Thromb. Haemost.1, 1356–1370 (2003). ArticleCASPubMed Google Scholar
Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell92, 735–745 (1998). ArticleCASPubMed Google Scholar
Semenza, G. L. Angiogenesis in ischemic and neoplastic disorders. Annu. Rev. Med.54, 17–28 (2003). ArticleCASPubMed Google Scholar
Mole, D. R., Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Regulation of HIF by the von Hippel–Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life52, 43–47 (2001). ArticleCASPubMed Google Scholar
Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. Jr. & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA93, 10595–10599 (1996). ArticleCASPubMedPubMed Central Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). ArticleCASPubMed Google Scholar
Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001). ArticleCASPubMed Google Scholar
Ivan, M. et al. HIF-α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468 (2001). ArticleCASPubMed Google Scholar
Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med.9, 677–684 (2003). ArticleCASPubMed Google Scholar
Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B. & Marme, D. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J. Biol. Chem.270, 25915–25919 (1995). ArticleCASPubMed Google Scholar
Okada, F. et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras upregulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl Acad. Sci. USA.95, 3609–3614 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shi, Y. -P. & Ferrara, N. Oncogenic ras fails to restore an in vivo oncogenic phenotype in embryonic stem cells lacking VEGF. Biochem. Biophys. Res. Commun.254, 480–483 (1999). ArticleCASPubMed Google Scholar
Zhang, X., Gaspard, J. P. & Chung, D. C. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res.61, 6050–6054 (2001). CASPubMed Google Scholar
Seno, H. et al. Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res.62, 506–511 (2002). CASPubMed Google Scholar
Williams, C. S., Tsujii, M., Reese, J., Dey, S. K. & DuBois, R. N. Host cyclooxygenase-2 modulates carcinoma growth. J. Clin. Invest.105, 1589–1594 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sonoshita, M. et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nature Med.7, 1048–1051 (2001). ArticleCASPubMed Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCASPubMed Google Scholar
Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380, 435–439 (1996). ArticleCASPubMed Google Scholar
Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development126, 1149–1159 (1999). ArticleCASPubMed Google Scholar
Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.111, 707–716 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gerber, H. P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med.5, 623–628 (1999). ArticleCASPubMed Google Scholar
Ryan, A. M. et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol. Pathol.27, 78–86 (1999). ArticleCASPubMed Google Scholar
Bassett, D. L. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat.73, 251–278 (1943). Article Google Scholar
Phillips, H. S., Hains, J., Leung, D. W. & Ferrara, N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology127, 965–967 (1990). ArticleCASPubMed Google Scholar
Ravindranath, N., Little-Ihrig, L., Phillips, H. S., Ferrara, N. & Zeleznik, A. J. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology131, 254–260 (1992). ArticleCASPubMed Google Scholar
Zimmermann, R. C. et al. Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. J. Clin. Endocrinol. Metab.86, 768–772 (2001). CASPubMed Google Scholar
Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med.4, 336–340 (1998). ArticleCASPubMed Google Scholar
Fraser, H. M. et al. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology141, 995–1000 (2000). ArticleCASPubMed Google Scholar
Hazzard, T. M., Xu, F. & Stouffer, R. L. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biol. Reprod.67, 1305–1312 (2002). ArticleCASPubMed Google Scholar
Volm, M., Koomagi, R. & Mattern, J. Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int. J. Cancer74, 64–68 (1997). ArticleCASPubMed Google Scholar
Yoshiji, H., Gomez, D. E., Shibuya, M. & Thorgeirsson, U. P. Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res.56, 2013–2016 (1996). CASPubMed Google Scholar
Ellis, L. M. et al. Vessel counts and vascular endothelial growth factor expression in pancreatic adenocarcinoma. Eur. J. Cancer34, 337–340 (1998). ArticleCASPubMed Google Scholar
Tomisawa, M. et al. Expression pattern of vascular endothelial growth factor isoform is closely correlated with tumour stage and vascularisation in renal cell carcinoma. Eur. J. Cancer35, 133–137 (1999). ArticleCASPubMed Google Scholar
Sowter, H. M. et al. Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab. Invest.77, 607–614 (1997). CASPubMed Google Scholar
Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature359, 843–845 (1992). ArticleCASPubMed Google Scholar
Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature359, 845–848 (1992). ArticleCASPubMed Google Scholar
Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature362, 841–844 (1993). The earliest study to demonstrate that blocking VEGF suppresses angiogenesis and tumour growthin vivo. ArticleCASPubMed Google Scholar
Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A. & Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest.95, 1789–1797 (1995). ArticleCASPubMedPubMed Central Google Scholar
Melnyk, O., Shuman, M. A. & Kim, K. J. Vascular endothelial growth factor promotes tumor dissemination by a mechanism distinct from its effect on primary tumor growth. Cancer Res.56, 921–924 (1996). CASPubMed Google Scholar
Borgstrom, P., Hillan, K. J., Sriramarao, P. & Ferrara, N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res.56, 4032–4039 (1996). CASPubMed Google Scholar
Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P. & Ferrara, N. Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate35, 1–10 (1998). ArticleCASPubMed Google Scholar
Borgstrom, P., Gold, D. P., Hillan, K. J. & Ferrara, N. Importance of VEGF for breast cancer angiogenesis in vivo: implications from intravital microscopy of combination treatments with an anti-VEGF neutralizing monoclonal antibody and doxorubicin. Anticancer Res.19, 4203–4214 (1999). CASPubMed Google Scholar
Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature367, 576–579 (1994). This study demonstrated for the first time the key role of VEGFR2 signalling in tumour angiogenesis. ArticleCASPubMed Google Scholar
Strawn, L. M. et al. Flk-1 as a target for tumor growth inhibition. Cancer Res.56, 3540–3545 (1996). CASPubMed Google Scholar
Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res.60, 2178–2189 (2000). CASPubMed Google Scholar
Wedge, S. R. et al. ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res.60, 970–975 (2000). CASPubMed Google Scholar
Saleh, M., Stacker, S. A. & Wilks, A. F. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res.56, 393–401 (1996). CASPubMed Google Scholar
Oku, T. et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res.58, 4185–4192 (1998). CASPubMed Google Scholar
Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res.59, 5209–5218 (1999). CASPubMed Google Scholar
Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A. & Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res.60, 6253–6258 (2000). CASPubMed Google Scholar
Kuo, C. J. et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl Acad. Sci. USA98, 4605–4610 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94, 715–725 (1998). ArticleCASPubMed Google Scholar
Tsuzuki, Y. et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α—> hypoxia response element—> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res.60, 6248–6252 (2000). CASPubMed Google Scholar
Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P. & Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β-cell carcinogenesis. Cancer Cell1, 193–202 (2002). The first evidence that VEGF inhibition results in tumour suppression in a genetic model of cancer. ArticleCASPubMed Google Scholar
Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer3, 401–410 (2003). ArticleCASPubMed Google Scholar
Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest.105, R15–R24 (2000). The study shows that VEGF blockade amplifies the effects of chemotherapy by blunting a key survival signal for endothelial cells. ArticleCASPubMedPubMed Central Google Scholar
Lee, C. G. et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res.60, 5565–5570 (2000). CASPubMed Google Scholar
Kozin, S. V. et al. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res.61, 39–44 (2001). CASPubMed Google Scholar
Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med.7, 987–989 (2001). ArticleCASPubMed Google Scholar
Pham, C. D. et al. Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest.16, 225–230 (1998). ArticleCASPubMed Google Scholar
Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med.10, 145–147 (2004). The study demonstrates that blocking VEGF has direct antivascular effects in colorectal cancer patients. ArticleCASPubMed Google Scholar
Presta, L. G. et al. Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res.57, 4593–4599 (1997). CASPubMed Google Scholar
Muller, Y. A. et al. VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure6, 1153–1167 (1998). ArticleCASPubMed Google Scholar
Lin, Y. S. et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J. Pharmacol. Exp. Ther.288, 371–378 (1999). CASPubMed Google Scholar
Davis-Smyth, T., Chen, H., Park, J., Presta, L. G. & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J.15, 4919–4927 (1996). ArticleCASPubMedPubMed Central Google Scholar
Fuh, G., Li, B., Crowley, C., Cunningham, B. & Wells, J. A. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem.273, 11197–11204 (1998). ArticleCASPubMed Google Scholar
Kim, E. S. et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Natl. Acad. Sci. USA99, 11399–11404 (2002). ArticleCASPubMedPubMed Central Google Scholar
Byrne, A. T. et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res.9, 5721–5728 (2003). CASPubMed Google Scholar
Shima, D. T. et al. Cloning and mRNA expression of vascular endothelial growth factor in ischemic retinas of Macaca fascicularis. Invest. Ophthalmol. Vis. Sci.37, 1334–1340 (1996). CASPubMed Google Scholar
Margolin, K. et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J. Clin. Oncol.19, 851–856 (2001). ArticleCASPubMed Google Scholar
Gordon, M. S. et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol.19, 843–850 (2001). ArticleCASPubMed Google Scholar
Reese, D. M. et al. A Phase II trial of humanized anti-vascular endothelial growth factor antibody for the treatment of androgen-independent prostate cancer. Prostate J.3, 65–70 (2001). Article Google Scholar
Cobleigh, M. A. et al. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin. Oncol.30, 117–124 (2003). ArticleCASPubMed Google Scholar
Yang, J. C. et al. A randomized trial of bevacizumab, an anti-VEGF antibody, for metastatic renal cancer. N. Engl. J. Med.349, 427–434 (2003). The first placebo-controlled study to show that blocking VEGF with bevacizumab has a clinical benefit in cancer patients. ArticleCASPubMedPubMed Central Google Scholar
Kabbinavar, F. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol.21, 60–65 (2003). ArticleCASPubMed Google Scholar
DeVore, R. et al. A randomized phase II trial comparing rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC. Proc. Am. Soc. Clin. Oncol. A1896 (2000).
Saltz, L. B. et al. Irinotecan plus fluorouracil/leucovorin for metastatic colorectal cancer: a new survival standard. Oncologist6, 81–91 (2001). ArticleCASPubMed Google Scholar
Hurwitz, H. et al. A phase III randomized trial to evaluate the safety and efficacy of adding bevacizumab (rhuMAb VEGF) to bolus IFL in first line metastatic colorectal cancer. N. Engl. J. Med. (in the press). A key study that demonstrates that adding bevacizumab to chemotherapy confers a significant survival advantage to patients with previously untreated metastatic colorectal cancer.
Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov.1, 493–502 (2002). ArticleCAS Google Scholar
Garber, K. Angiogenesis inhibitors suffer new setback. Nature Biotechnol.20, 1067–1068 (2002). ArticleCAS Google Scholar
Smith, J. K., Mamoon, N. M. & Duhe, R. J. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol. Res.14, 175–225 (2004). ArticlePubMed Google Scholar
Richly, H. et al. A phase I clinical and pharmacokinetic study of the Raf kinase inhibitor (RKI) BAY 43-9006 administered in combination with doxorubicin in patients with solid tumors. Int. J. Clin. Pharmacol. Ther.41, 620–621 (2003). ArticleCASPubMed Google Scholar
Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nature Med.9, 47–52 (2003). ArticleCASPubMed Google Scholar
Ruckman, J. et al. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem.273, 20556–20567 (1998). ArticleCASPubMed Google Scholar
Puliafito, C. The anti-VEGF aptamer approach: the macugen collaborative trial. Proc. Am. Acad. Ophthalmol.Subspecialty Day. The Retina Debates 2003: New Technology & Controversies from the Posterior Segment, Anaheim, California. 183–185 (2003).
Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol.293, 865–881 (1999). ArticleCASPubMed Google Scholar
Goldberg, R. M. et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol.22, 23–30 (2004). ArticleCASPubMed Google Scholar
Miller, K. D. et al. Phase III trial of capecitabine (Xeloda) plus bevacizumab (Avastine) versus capecitabine alone in women with metastatic breast cancer (MBC) previously treated with an anthracycline and a taxane. Breast Cancer Res. Treat.76, S37 (2002). Article Google Scholar
Kindler, L. et al. Bevacizumab (B) plus gemcitabine (G) in patients (pts) with advanced pancreatic cancer. Proc. Am Soc. Clin. Oncol.22, 259 (2003). Google Scholar
Carson, W. E. et al. A phase 2 trial of a recombinant humanized monoclonal anti-vascular endothelial growth factor (VEGF) antibody in patients with malignant melanoma. Proc. Am. Soc. Clin. Oncol. A705 (2003).
Herbst, R. S. et al. Phase I/II triall evaluating blockage of tumour blood supply and tumour cell proliferation with combines bevacizumab and erlotinib HCI as targeted cancer therapy in patients with recurrent non-small cell lung cancer. Eur. J. Cancer1, S293 (2003). Article Google Scholar
Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer2, 727–739 (2002). ArticleCAS Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticleCASPubMedPubMed Central Google Scholar
Morgan, B. et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J. Clin. Oncol.21, 3955–3964 (2003). ArticleCASPubMed Google Scholar
Gerber, H. P. & Ferrara, N. The role of VEGF in normal and neoplastic hematopoiesis. J. Mol. Med.81, 20–31 (2003). ArticleCASPubMed Google Scholar