Growth factor engineering by degenerate homoduplex gene family recombination (original) (raw)
References
Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer8, 3–9 (2001). ArticleCAS Google Scholar
Reddy, C.C., Niyogi, S.K., Wells, A., Wiley, H.S. & Lauffenburger, D.A. Engineering epidermal growth factor for enhanced mitogenic potency. Nat. Biotechnol.14, 1696–1699 (1996). ArticleCAS Google Scholar
Matsunami, R.K., Campion, S.R., Niyogi, S.K. & Stevens, A. Analogs of human epidermal growth factor which partially inhibit the growth factor-dependent protein-tyrosine kinase activity of the epidermal growth factor receptor. FEBS Lett.264, 105–108 (1990). ArticleCAS Google Scholar
Mullenbach, G.T. et al. Modification of a receptor-binding surface of epidermal growth factor (EGF): analogs with enhanced receptor affinity at low pH or at neutrality. Protein Eng.11, 473–480 (1998). ArticleCAS Google Scholar
Souriau, C., Gracy, J., Chiche, L. & Weill, M. Direct selection of EGF mutants displayed on filamentous phage using cells overexpressing EGF receptor. Biol. Chem.380, 451–458 (1999). ArticleCAS Google Scholar
Souriau, C. et al. A simple luciferase assay for signal transduction activity detection of epidermal growth factor displayed on phage. Nucleic Acids Res.25, 1585–1590 (1997). ArticleCAS Google Scholar
van de Poll, M.L., van Vugt, M.J., Lenferink, A.E. & van Zoelen, E.J. Identification of the minimal requirements for binding to the human epidermal growth factor (EGF) receptor using chimeras of human EGF and an EGF repeat of Drosophila Notch. J. Biol. Chem.273, 16075–16081 (1998). ArticleCAS Google Scholar
Van Zoelen, E.J., Stortelers, C., Lenferink, A.E. & Van de Poll, M.L. The EGF domain: requirements for binding to receptors of the ErbB family. Vitam. Horm.59, 99–131 (2000). ArticleCAS Google Scholar
Groenen, L.C., Nice, E.C. & Burgess, A.W. Structure–function relationships for the EGF/TGF-α family of mitogens. Growth Factors11, 235–257 (1994). ArticleCAS Google Scholar
Pompon, D. & Nicolas, A. Protein engineering by cDNA recombination in yeasts: shuffling of mammalian cytochrome P-450 functions. Gene83, 15–24 (1989). ArticleCAS Google Scholar
Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature370, 389–391 (1994). ArticleCAS Google Scholar
Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature391, 288–291 (1998). ArticleCAS Google Scholar
Coco, W.M. et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol.19, 354–359 (2001). ArticleCAS Google Scholar
Gibbs, M.D., Nevalainen, K.M. & Bergquist, P.L. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene271, 13–20 (2001). ArticleCAS Google Scholar
Moore, G.L., Maranas, C.D., Lutz, S. & Benkovic, S.J. Predicting crossover generation in DNA shuffling. Proc. Natl. Acad. Sci. USA98, 3226–3231 (2001). ArticleCAS Google Scholar
Paabo, S., Irwin, D.M. & Wilson, A.C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem.265, 4718–4721 (1990). CASPubMed Google Scholar
Levichkin, I.V., Shul'ga, A.A., Kurbanov, F.T. & Kirpichnikov, M.P. A new method of designing hybrid genes—the homolog recombination method. Mol. Biol. (Mosk)29, 983–991 (1995). CAS Google Scholar
Stemmer, W.P.C. Searching sequence space. Biotechnology13, 549–553 (1995). CAS Google Scholar
Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA91, 10747–10751 (1994). ArticleCAS Google Scholar
Ostermeier, M., Nixon, A.E., Shim, J.H. & Benkovic, S.J. Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad. Sci. USA96, 3562–3567 (1999). ArticleCAS Google Scholar
Kikuchi, M., Ohnishi, K. & Harayama, S. An effective family shuffling method using single-stranded DNA. Gene243, 133–137 (2000). ArticleCAS Google Scholar
Voigt, C.A., Kauffman, S. & Wang, Z.G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem.55, 79–160 (2001). Article Google Scholar
Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.G. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA98, 3778–3783 (2001). ArticleCAS Google Scholar
Moore, J.C. & Arnold, F.H. Directed evolution of a _para_-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol.14, 458–467 (1996). ArticleCAS Google Scholar
Coco, W.M. RACHITT: gene family shuffling by random chimeragenesis on transient templates. Methods Mol. Biol, in press (2003).
van de Poll, M.L., van Vugt, M.J., Lenferink, A.E. & van Zoelen, E.J. Insertion of Argos sequences into the B-loop of epidermal growth factor results in a low-affinity ligand with strong agonistic activity. Biochemistry36, 7425–7431 (1997). ArticleCAS Google Scholar