Growth factor engineering by degenerate homoduplex gene family recombination (original) (raw)

References

  1. Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer 8, 3–9 (2001).
    Article CAS Google Scholar
  2. Reddy, C.C., Niyogi, S.K., Wells, A., Wiley, H.S. & Lauffenburger, D.A. Engineering epidermal growth factor for enhanced mitogenic potency. Nat. Biotechnol. 14, 1696–1699 (1996).
    Article CAS Google Scholar
  3. Matsunami, R.K., Campion, S.R., Niyogi, S.K. & Stevens, A. Analogs of human epidermal growth factor which partially inhibit the growth factor-dependent protein-tyrosine kinase activity of the epidermal growth factor receptor. FEBS Lett. 264, 105–108 (1990).
    Article CAS Google Scholar
  4. Mullenbach, G.T. et al. Modification of a receptor-binding surface of epidermal growth factor (EGF): analogs with enhanced receptor affinity at low pH or at neutrality. Protein Eng. 11, 473–480 (1998).
    Article CAS Google Scholar
  5. Souriau, C., Gracy, J., Chiche, L. & Weill, M. Direct selection of EGF mutants displayed on filamentous phage using cells overexpressing EGF receptor. Biol. Chem. 380, 451–458 (1999).
    Article CAS Google Scholar
  6. Souriau, C. et al. A simple luciferase assay for signal transduction activity detection of epidermal growth factor displayed on phage. Nucleic Acids Res. 25, 1585–1590 (1997).
    Article CAS Google Scholar
  7. van de Poll, M.L., van Vugt, M.J., Lenferink, A.E. & van Zoelen, E.J. Identification of the minimal requirements for binding to the human epidermal growth factor (EGF) receptor using chimeras of human EGF and an EGF repeat of Drosophila Notch. J. Biol. Chem. 273, 16075–16081 (1998).
    Article CAS Google Scholar
  8. Van Zoelen, E.J., Stortelers, C., Lenferink, A.E. & Van de Poll, M.L. The EGF domain: requirements for binding to receptors of the ErbB family. Vitam. Horm. 59, 99–131 (2000).
    Article CAS Google Scholar
  9. Groenen, L.C., Nice, E.C. & Burgess, A.W. Structure–function relationships for the EGF/TGF-α family of mitogens. Growth Factors 11, 235–257 (1994).
    Article CAS Google Scholar
  10. Pompon, D. & Nicolas, A. Protein engineering by cDNA recombination in yeasts: shuffling of mammalian cytochrome P-450 functions. Gene 83, 15–24 (1989).
    Article CAS Google Scholar
  11. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).
    Article CAS Google Scholar
  12. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).
    Article CAS Google Scholar
  13. Coco, W.M. et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359 (2001).
    Article CAS Google Scholar
  14. Gibbs, M.D., Nevalainen, K.M. & Bergquist, P.L. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271, 13–20 (2001).
    Article CAS Google Scholar
  15. Moore, G.L., Maranas, C.D., Lutz, S. & Benkovic, S.J. Predicting crossover generation in DNA shuffling. Proc. Natl. Acad. Sci. USA 98, 3226–3231 (2001).
    Article CAS Google Scholar
  16. Paabo, S., Irwin, D.M. & Wilson, A.C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265, 4718–4721 (1990).
    CAS PubMed Google Scholar
  17. Levichkin, I.V., Shul'ga, A.A., Kurbanov, F.T. & Kirpichnikov, M.P. A new method of designing hybrid genes—the homolog recombination method. Mol. Biol. (Mosk) 29, 983–991 (1995).
    CAS Google Scholar
  18. Stemmer, W.P.C. Searching sequence space. Biotechnology 13, 549–553 (1995).
    CAS Google Scholar
  19. Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).
    Article CAS Google Scholar
  20. Ostermeier, M., Nixon, A.E., Shim, J.H. & Benkovic, S.J. Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad. Sci. USA 96, 3562–3567 (1999).
    Article CAS Google Scholar
  21. Kikuchi, M., Ohnishi, K. & Harayama, S. An effective family shuffling method using single-stranded DNA. Gene 243, 133–137 (2000).
    Article CAS Google Scholar
  22. Voigt, C.A., Kauffman, S. & Wang, Z.G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem. 55, 79–160 (2001).
    Article Google Scholar
  23. Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.G. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA 98, 3778–3783 (2001).
    Article CAS Google Scholar
  24. Moore, J.C. & Arnold, F.H. Directed evolution of a _para_-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14, 458–467 (1996).
    Article CAS Google Scholar
  25. Coco, W.M. RACHITT: gene family shuffling by random chimeragenesis on transient templates. Methods Mol. Biol, in press (2003).
  26. van de Poll, M.L., van Vugt, M.J., Lenferink, A.E. & van Zoelen, E.J. Insertion of Argos sequences into the B-loop of epidermal growth factor results in a low-affinity ligand with strong agonistic activity. Biochemistry 36, 7425–7431 (1997).
    Article CAS Google Scholar

Download references