Screening for gene function in chicken embryo using RNAi and electroporation (original) (raw)

References

  1. Lo, D.C. Challenges for neuroscience in a post-genome world. Nat. Neurosci. 4, 1153–1154 (2001).
    Article CAS Google Scholar
  2. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS Google Scholar
  3. Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380 (1997).
    Article CAS Google Scholar
  4. Itasaki, N., Bel-Vialar, S. & Krumlauf, R. 'Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nat. Cell Biol. 1, E203–E207 (1999).
    Article CAS Google Scholar
  5. Müller, U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech. Dev. 82, 3–21 (1999).
    Article Google Scholar
  6. Tang, J., Rutishauser, U. & Landmesser, L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405–414 (1994).
    Article CAS Google Scholar
  7. Stoeckli, E.T. & Landmesser, L.T. Axonin-1, NrCAM, and NgCAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14, 1165–1179 (1995).
    Article CAS Google Scholar
  8. Burstyn-Cohen, T. et al. F-spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron 23, 233–246 (1999).
    Article CAS Google Scholar
  9. Perrin, F.E., Rathjen, F.G. & Stoeckli, E.T. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 30, 707–723 (2001).
    Article CAS Google Scholar
  10. Momose, T. et al. Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ. 41, 335–344 (1999).
    Article CAS Google Scholar
  11. Swartz, M., Eberhart, J., Mastick, G.S. & Krull, C.E. Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev. Biol. 233, 13–21 (2001).
    Article CAS Google Scholar
  12. Li, Y.-X., Farrell, M.J., Liu, R., Mohanty, N. & Kirby, M.L. Double-stranded RNA injection produces null phenotypes in zebrafish. Dev. Biol. 217, 394–405 (2000).
    Article CAS Google Scholar
  13. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75 (2000).
    Article CAS Google Scholar
  14. Zhao, Z., Cao, Y., Li, M. & Meng, A. Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229, 215–223 (2001).
    Article CAS Google Scholar
  15. Stoeckli, E.T. & Landmesser, L.T. Axon guidance at choice points. Curr. Opin. Neurobiol. 8, 73–79 (1998).
    Article CAS Google Scholar
  16. Ikonomov, O.C., Kulesa, M.C., Shisheva, A.C. & Jacob, M.H. Innervation and target tissue interactions induce Rab-GDP dissociation inhibitor (GDI) expression during peripheral synapse formation in developing chick ciliary ganglion neurons in situ. J. Neurosci. 18, 6331–6339 (1998).
    Article CAS Google Scholar
  17. Stenmark, H. & Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2, Reviews 3007.1–3007.7 (2001).
    Article Google Scholar
  18. Geyer, M. & Wittinghofer, A. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr. Opin. Struct. Biol. 7, 786–792 (1997).
    Article CAS Google Scholar
  19. Perrin, F.E. & Stoeckli E.T. Use of lipophilic dyes in studies of axonal pathfinding in vivo. Microsc. Res. Tech. 48, 25–31 (2000).
    Article CAS Google Scholar

Download references