Screening for gene function in chicken embryo using RNAi and electroporation (original) (raw)
References
- Lo, D.C. Challenges for neuroscience in a post-genome world. Nat. Neurosci. 4, 1153–1154 (2001).
Article CAS Google Scholar - Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
Article CAS Google Scholar - Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380 (1997).
Article CAS Google Scholar - Itasaki, N., Bel-Vialar, S. & Krumlauf, R. 'Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nat. Cell Biol. 1, E203–E207 (1999).
Article CAS Google Scholar - Müller, U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech. Dev. 82, 3–21 (1999).
Article Google Scholar - Tang, J., Rutishauser, U. & Landmesser, L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405–414 (1994).
Article CAS Google Scholar - Stoeckli, E.T. & Landmesser, L.T. Axonin-1, NrCAM, and NgCAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14, 1165–1179 (1995).
Article CAS Google Scholar - Burstyn-Cohen, T. et al. F-spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron 23, 233–246 (1999).
Article CAS Google Scholar - Perrin, F.E., Rathjen, F.G. & Stoeckli, E.T. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 30, 707–723 (2001).
Article CAS Google Scholar - Momose, T. et al. Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ. 41, 335–344 (1999).
Article CAS Google Scholar - Swartz, M., Eberhart, J., Mastick, G.S. & Krull, C.E. Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev. Biol. 233, 13–21 (2001).
Article CAS Google Scholar - Li, Y.-X., Farrell, M.J., Liu, R., Mohanty, N. & Kirby, M.L. Double-stranded RNA injection produces null phenotypes in zebrafish. Dev. Biol. 217, 394–405 (2000).
Article CAS Google Scholar - Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75 (2000).
Article CAS Google Scholar - Zhao, Z., Cao, Y., Li, M. & Meng, A. Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229, 215–223 (2001).
Article CAS Google Scholar - Stoeckli, E.T. & Landmesser, L.T. Axon guidance at choice points. Curr. Opin. Neurobiol. 8, 73–79 (1998).
Article CAS Google Scholar - Ikonomov, O.C., Kulesa, M.C., Shisheva, A.C. & Jacob, M.H. Innervation and target tissue interactions induce Rab-GDP dissociation inhibitor (GDI) expression during peripheral synapse formation in developing chick ciliary ganglion neurons in situ. J. Neurosci. 18, 6331–6339 (1998).
Article CAS Google Scholar - Stenmark, H. & Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2, Reviews 3007.1–3007.7 (2001).
Article Google Scholar - Geyer, M. & Wittinghofer, A. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr. Opin. Struct. Biol. 7, 786–792 (1997).
Article CAS Google Scholar - Perrin, F.E. & Stoeckli E.T. Use of lipophilic dyes in studies of axonal pathfinding in vivo. Microsc. Res. Tech. 48, 25–31 (2000).
Article CAS Google Scholar