Widespread occurrence of antisense transcription in the human genome (original) (raw)
Wagner, E.G. & Simons, R.W. Antisense RNA control in bacteria, phages, and plasmids. Annu. Rev. Microbiol.48, 713–742 (1994). ArticleCASPubMed Google Scholar
Knee, R. & Murphy, P.R. Regulation of gene expression by natural antisense RNA transcripts. Neurochem. Int.31, 379–392 (1997). ArticleCASPubMed Google Scholar
Kumar, M. & Carmichael, G.G. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev.62, 1415–1434 (1998). CASPubMedPubMed Central Google Scholar
Vanhee-Brossollet, C. & Vaquero, C. Do natural antisense transcripts make sense in eukaryotes? Gene211, 1–9 (1998). ArticleCASPubMed Google Scholar
Terryn, N. & Rouze, P. The sense of naturally transcribed antisense RNAs in plants. Trends Plant Sci.5, 394–396 (2000). ArticleCASPubMed Google Scholar
Kelly, R.L. & Kuroda, M.I. Noncoding RNA genes in dosage compensation and imprinting. Cell103, 9–12 (2000). Article Google Scholar
Sleutels, F., Barlow, D.P. & Lyle, R. The uniqueness of the imprinting mechanism. Curr. Opin. Genet. Dev.10, 229–233 (2000). ArticleCASPubMed Google Scholar
Li, A.W. & Murphy, P.R. Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation. Mol. Cell. Endocrinol.162, 69–78 (2000). ArticleCASPubMed Google Scholar
Hastings, M.L., Ingle, H.A., Lazar, M.A. & Munroe, S.H. Post-transcriptional regulation of thyroid hormone receptor expression by _cis_-acting sequences and a naturally occurring antisense RNA. J. Biol. Chem.275, 11507–11513 (2000). ArticleCASPubMed Google Scholar
Wu, H., MacLeod, A.R., Lima, W.F. & Crooke, S.T. Identification and partial purification of human double strand RNase activity. A novel terminating mechanism for oligoribonucleotide antisense drugs. J. Biol. Chem.273, 2532–2542 (1998). ArticleCASPubMed Google Scholar
Bass, B.L. RNA editing and hypermutation by adenosine deamination. Trends Biochem. Sci.22, 157–162 (1997). ArticleCASPubMed Google Scholar
Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotides synthesizer. Nat. Biotechnol.19, 342–347 (2001). ArticleCASPubMed Google Scholar
Shoemaker, D.D. et al. Experimental annotation of the human genome using microarray technology. Nature409, 922–927 (2001). ArticleCASPubMed Google Scholar
Iwabuchi, K., Bartel, P.L., Li, B., Marraccino, R. & Fields, S. Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. USA91, 6098–6102 (1994). ArticleCASPubMedPubMed Central Google Scholar
Lauper, N. et al. Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene17, 2637–2643 (1998). ArticleCASPubMed Google Scholar
Zariwala, M., Liu, J. & Xiong, Y. Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins. Oncogene17, 2787–2798 (1998). ArticleCASPubMed Google Scholar
Lehner, B., William, G., Campbell, R.D. & Sanderson, C.M. Antisense transcripts in the human genome. Trends Genet.18, 63–65 (2002). ArticleCASPubMed Google Scholar
Fahey, M.E., Moore, T.F. & Higgins, D.G. Overlapping antisense transcription in the human genome. Comp. Funct. Genom.3, 244–253 (2002). ArticleCAS Google Scholar
Shendure, J. & Church, G.M. Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol.3, 1–14 (2002). Article Google Scholar
Duret, L., Dorkeld, F. & Gautier, C. Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Res.21, 2315–2322 (1993). ArticleCASPubMedPubMed Central Google Scholar