A method for the comprehensive proteomic analysis of membrane proteins (original) (raw)

References

  1. Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2002).
    Google Scholar
  2. Santoni, V., Molloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070 (2000).
    Article CAS Google Scholar
  3. Washburn, M.P., Wolters, D. & Yates, J.R., III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).
    Article CAS Google Scholar
  4. Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).
    Article CAS Google Scholar
  5. Blonder, B. et al. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography–tandem mass spectrometry. J. Proteome Res. 1, 351–360 (2002).
    Article CAS Google Scholar
  6. Goshe, M.B., Blonder, B. & Smith, R.D. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J. Proteome Res. 2, 153–161 (2003).
    Article CAS Google Scholar
  7. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).
    Article CAS Google Scholar
  8. Oda, Y., Nagasu, T. & Chait, B.D. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).
    Article CAS Google Scholar
  9. Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analysis. Anal. Chem. 73, 2578–2586 (2001).
    Article CAS Google Scholar
  10. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).
    Article CAS Google Scholar
  11. MacCoss, M.J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905 (2002).
    Article CAS Google Scholar
  12. Cheeseman, I.M. et al. Phospho-regulation of kinetochore–microtubule attachments by the aurora kinase ipl1p. Cell 111, 163–172 (2002).
    Article CAS Google Scholar
  13. Howell, K.E. & Palade, G.E. Hepatic Golgi fractions resolved into membrane and content subfractions. J. Cell Biol. 92, 822–832 (1982).
    Article CAS Google Scholar
  14. Taylor, R.S. et al. Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 21, 3441–3459 (2000).
    Article CAS Google Scholar
  15. Blobel, G. & Sabatini, D.D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J. Cell Biol. 45, 130–145 (1970).
    Article CAS Google Scholar
  16. Sabatini, D.D. & Blobel, G. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes. J. Cell Biol. 45, 146–157 (1970).
    Article CAS Google Scholar
  17. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).
    Article CAS Google Scholar
  18. MacCoss, M.J., Wu, C.C. & Yates, J.R., III. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).
    Article CAS Google Scholar
  19. Moller, S., Croning, M.D.R. & Apweiler, R. Evaluation of methods for the prediction of membrane-spanning regions. Bioinformatics 17, 646–653 (2001).
    Article CAS Google Scholar
  20. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).
    Article CAS Google Scholar
  21. Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).
    Article CAS Google Scholar
  22. Foletti, D.L., Lin, R., Finley, M.A. & Scheller, R.H. Phosphorylated syntaxin 1 is localized to discrete domains along a subset of axons. J. Neurosci. 20, 4535–4544 (2000).
    Article CAS Google Scholar
  23. Madrid, R. et al. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin–adaptor complexes. EMBO J. 20, 7021 (2001).
    Article Google Scholar
  24. Zelenina, M., Zelenin, S., Bondar, A.A., Brismar, H. & Aperia, A. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am. J. Physiol. Renal Physiol. 283, F309–F318 (2002).
    Article CAS Google Scholar
  25. Sprong, H. et al. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 237, 25880–25888 (1998).
    Article Google Scholar
  26. Ring, G. & Eichler, J. Characterization of inverted membrane vesicles from the halophilic archaeon Haloferax volcanii. J. Membr. Biol. 183, 195–204 (2001).
    Article CAS Google Scholar
  27. Kawano, J. et al. CALNUC (nucleobindin) is localized in the Golgi apparatus in insect cells. Eur. J. Cell Biol. 79, 16167–16173 (2000).
    Article Google Scholar
  28. Morel-Huaux, V.M. et al. The calcium-binding protein p54/NEFA is a novel luminal resident of medial Golgi cisternae that trafficks independently of mannosidase II. Eur. J. Cell Biol. 81, 87–100 (2002).
    Article CAS Google Scholar
  29. Taylor, R.S., Jones, S.M., Dahl, R.H., Nordeen, M.H. & Howell, K.E. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol. Biol. Cell 8, 1911–1931 (1997).
    Article CAS Google Scholar
  30. Wen, D.X., Svensson, E.C. & Paulson, J.C. Tissue-specific alternative splicing of the β-galactoside α2,6- sialyltransferase gene. J. Biol. Chem. 267, 2512–2518 (1992).
    CAS PubMed Google Scholar
  31. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).
    Article CAS Google Scholar
  32. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).
    Article CAS Google Scholar
  33. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).
    Article CAS Google Scholar
  34. Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M. & Yates, J.R., III. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).
    Article CAS Google Scholar
  35. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (2000).
    Article Google Scholar
  36. Eng, J.K., McCormack, A.L. & Yates, J.R., III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
    Article CAS Google Scholar
  37. Tabb, D.L., McDonald, W.H. & Yates, J.R., III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).
    Article CAS Google Scholar
  38. Roepstorff, P. & Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984).
    Article CAS Google Scholar

Download references