High-throughput classification of yeast mutants for functional genomics using metabolic footprinting (original) (raw)
References
Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol.19, 45–50 (2001). ArticleCAS Google Scholar
Cramer, N.L. A representation for the adaptive generation of simple sequential programs. in Proceedings of the First International Conference on Genetic Algorithms and their Applications (ed. Grefenstette, J.J.) 183–187 (Lawrence Erlbaum, Mahwah, New Jersey, 1985). Google Scholar
Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, Massachusetts, 1992). Google Scholar
Banzhaf, W., Nordin, P., Keller, R.E. & Francone, F.D. Genetic Programming: An Introduction (Morgan Kaufmann, San Francisco, 1998). Book Google Scholar
Langdon, W.B. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! (Kluwer, Boston, 1998).
Kell, D.B., Darby, R.M. & Draper, J. Genomic computing: explanatory analysis of plant expression profiling data using machine learning. Plant Physiol.126, 943–951 (2001). ArticleCAS Google Scholar
Kell, D.B. Genotype:phenotype mapping: genes as computer programs. Trends Genet.18, 555–559 (2002). ArticleCAS Google Scholar
Langdon, W.B. & Poli, R. Foundations of Genetic Programming (Springer, Berlin, 2002). Book Google Scholar
Fiehn, O. Metabolomics: the link between genotypes and phenotypes. Plant Mol. Biol.48, 155–171 (2002). ArticleCAS Google Scholar
Kell, D.B. & King, R.D. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. Trends Biotechnol.18, 93–98 (2000). ArticleCAS Google Scholar
Baganz, F., Hayes, A., Marren, D., Gardner, D.C.J. & Oliver, S.G. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast13, 1563–1573 (1997). ArticleCAS Google Scholar
Oliver, S.G., Winson, M.K., Kell, D.B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol.16, 373–378 (1998). ArticleCAS Google Scholar
Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. Classification and Regression Trees (Wadsworth International, Belmont, California, 1984). Google Scholar
Quinlan, J.R. C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, California, 1993). Google Scholar
Alsberg, B.K., Goodacre, R., Rowland, J.J. & Kell, D.B. Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods. Anal. Chim. Acta348, 389–407 (1997). ArticleCAS Google Scholar
Aranibar, N., Singh, B.K., Stockton, G.W. & Ott, K.-H. Automated mode-of-action detection by metabolic profiling. Biochem. Biophys. Res. Commun.286, 150–155 (2001). ArticleCAS Google Scholar
Griffin, J.L. et al. Metabolic profiling of genetic disorders: a multitissue H-1 nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal. Biochem.293, 16–21 (2001). ArticleCAS Google Scholar
Goodacre, R., Vaidyanathan, S., Bianchi, G. & Kell, D.B. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst127, 1457–1462 (2002). ArticleCAS Google Scholar
Martens, H. & Næs, T. Multivariate Calibration (John Wiley, Chichester, UK, 1989). Google Scholar
Jolliffe, I.T. Principal Component Analysis (Springer, New York, USA, 1986). Book Google Scholar
MacFie, H.J.H., Gutteridge, C.S. & Norris, J.R. Use of canonical variates in differentiation of bacteria by pyrolysis gas-liquid chromatography. J. Gen. Microbiol.104, 67–74 (1978). ArticleCAS Google Scholar
Windig, W., Haverkamp, J. & Kistemaker, P.G. Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal. Chem.55, 81–88 (1983). ArticleCAS Google Scholar
Manly, B.F.J. Multivariate Statistical Methods: A Primer (Chapman and Hall, London, UK, 1994). Google Scholar
Goodacre, R. et al. Rapid identification of urinary tract infection bacteria using hyperspectral, whole organism fingerprinting and artificial neural networks. Microbiology144, 1157–1170 (1998). ArticleCAS Google Scholar