High-throughput classification of yeast mutants for functional genomics using metabolic footprinting (original) (raw)

References

  1. Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).
    Article CAS Google Scholar
  2. Cramer, N.L. A representation for the adaptive generation of simple sequential programs. in Proceedings of the First International Conference on Genetic Algorithms and their Applications (ed. Grefenstette, J.J.) 183–187 (Lawrence Erlbaum, Mahwah, New Jersey, 1985).
    Google Scholar
  3. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, Massachusetts, 1992).
    Google Scholar
  4. Banzhaf, W., Nordin, P., Keller, R.E. & Francone, F.D. Genetic Programming: An Introduction (Morgan Kaufmann, San Francisco, 1998).
    Book Google Scholar
  5. Langdon, W.B. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! (Kluwer, Boston, 1998).
  6. Kell, D.B., Darby, R.M. & Draper, J. Genomic computing: explanatory analysis of plant expression profiling data using machine learning. Plant Physiol. 126, 943–951 (2001).
    Article CAS Google Scholar
  7. Kell, D.B. Genotype:phenotype mapping: genes as computer programs. Trends Genet. 18, 555–559 (2002).
    Article CAS Google Scholar
  8. Langdon, W.B. & Poli, R. Foundations of Genetic Programming (Springer, Berlin, 2002).
    Book Google Scholar
  9. Fiehn, O. Metabolomics: the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).
    Article CAS Google Scholar
  10. Kell, D.B. & King, R.D. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. Trends Biotechnol. 18, 93–98 (2000).
    Article CAS Google Scholar
  11. Baganz, F., Hayes, A., Marren, D., Gardner, D.C.J. & Oliver, S.G. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13, 1563–1573 (1997).
    Article CAS Google Scholar
  12. Oliver, S.G., Winson, M.K., Kell, D.B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998).
    Article CAS Google Scholar
  13. Duda, R.O., Hart, P.E. & Stork, D.E. Pattern Classification, edn. 2 (John Wiley, London, 2001).
    Google Scholar
  14. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, Berlin, 2001).
  15. Oliver, S.G. Proteomics: guilt-by-association goes global. Nature 403, 601–603 (2000).
    Article CAS Google Scholar
  16. Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. Classification and Regression Trees (Wadsworth International, Belmont, California, 1984).
    Google Scholar
  17. Quinlan, J.R. C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, California, 1993).
    Google Scholar
  18. Alsberg, B.K., Goodacre, R., Rowland, J.J. & Kell, D.B. Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods. Anal. Chim. Acta 348, 389–407 (1997).
    Article CAS Google Scholar
  19. Aranibar, N., Singh, B.K., Stockton, G.W. & Ott, K.-H. Automated mode-of-action detection by metabolic profiling. Biochem. Biophys. Res. Commun. 286, 150–155 (2001).
    Article CAS Google Scholar
  20. Griffin, J.L. et al. Metabolic profiling of genetic disorders: a multitissue H-1 nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal. Biochem. 293, 16–21 (2001).
    Article CAS Google Scholar
  21. Goodacre, R., Vaidyanathan, S., Bianchi, G. & Kell, D.B. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst 127, 1457–1462 (2002).
    Article CAS Google Scholar
  22. Martens, H. & Næs, T. Multivariate Calibration (John Wiley, Chichester, UK, 1989).
    Google Scholar
  23. Jolliffe, I.T. Principal Component Analysis (Springer, New York, USA, 1986).
    Book Google Scholar
  24. MacFie, H.J.H., Gutteridge, C.S. & Norris, J.R. Use of canonical variates in differentiation of bacteria by pyrolysis gas-liquid chromatography. J. Gen. Microbiol. 104, 67–74 (1978).
    Article CAS Google Scholar
  25. Windig, W., Haverkamp, J. & Kistemaker, P.G. Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal. Chem. 55, 81–88 (1983).
    Article CAS Google Scholar
  26. Manly, B.F.J. Multivariate Statistical Methods: A Primer (Chapman and Hall, London, UK, 1994).
    Google Scholar
  27. Goodacre, R. et al. Rapid identification of urinary tract infection bacteria using hyperspectral, whole organism fingerprinting and artificial neural networks. Microbiology 144, 1157–1170 (1998).
    Article CAS Google Scholar
  28. Kell, D.B. Defence against the flood: a solution to the data mining and predictive modelling challenges of today. Bioinformat. World 1, 16–18 (http://www.abergc.com/biwpp16-18_as_publ.pdf, 2002).
    Google Scholar

Download references