A transgenic mouse model of the ubiquitin/proteasome system (original) (raw)
Sherman, M.Y. & Goldberg, A.L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron29, 15–32 (2001). ArticleCAS Google Scholar
DeSalle, L.M. & Pagano, M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett.490, 179–189 (2001). ArticleCAS Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCAS Google Scholar
Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). ArticleCAS Google Scholar
Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet.19, 148–154 (1998). ArticleCAS Google Scholar
Lam, Y.A. et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl. Acad. Sci. USA97, 9902–9906 (2000). ArticleCAS Google Scholar
Lindsten, K. et al. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol.157, 417–427 (2002). ArticleCAS Google Scholar
Mizuno, Y., Hattori, N., Mori, H., Suzuki, T. & Tanaka, K. Parkin and Parkinson's disease. Curr. Opin. Neurol.14, 477–482 (2001). ArticleCAS Google Scholar
Muchowski, P.J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron35, 9–12 (2002). ArticleCAS Google Scholar
Soto, C. Protein misfolding and disease; protein refolding and therapy. FEBS Lett.498, 204–207 (2001). ArticleCAS Google Scholar
Verhoef, L.G., Lindsten, K., Masucci, M.G. & Dantuma, N.P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet.11, 2689–2700 (2002). ArticleCAS Google Scholar
Floyd, J.A. & Hamilton, B.A. Intranuclear inclusions and the ubiquitin-proteasome pathway: digestion of a red herring? Neuron24, 765–766 (1999). ArticleCAS Google Scholar
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell95, 55–66 (1998). ArticleCAS Google Scholar
Watase, K. et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron34, 905–919 (2002). ArticleCAS Google Scholar
Ryan, K.M., Phillips, A.C. & Vousden, K.H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell. Biol.13, 332–337 (2001). ArticleCAS Google Scholar
Slingerland, J. & Pagano, M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J. Cell Physiol.183, 10–17 (2000). ArticleCAS Google Scholar
Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA96, 10403–10408 (1999). ArticleCAS Google Scholar
Meng, L., Kwok, B.H., Sin, N. & Crews, C.M. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res.59, 2798–2801 (1999). CASPubMed Google Scholar
Aghajanian, C. et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res.8, 2505–2511 (2002). CASPubMed Google Scholar
Pati, S. et al. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood99, 3771–3779 (2002). ArticleCAS Google Scholar
Sgadari, C. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat. Med.8, 225–232 (2002). ArticleCAS Google Scholar
Hosseini, H. et al. Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. J. Neurobiol.118, 233–244 (2001). CAS Google Scholar
Zollner, T.M. et al. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J. Clin. Invest.109, 671–679 (2002). ArticleCAS Google Scholar
Luo, H. et al. A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation72, 196–202 (2001). ArticleCAS Google Scholar
Rock, K.L. & Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I–presented peptides. Annu. Rev. Immunol.17, 739–779 (1999). ArticleCAS Google Scholar
Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet.18, 202–209 (2002). ArticleCAS Google Scholar
Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M.G. Short-lived green fluorescent proteins for quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol.18, 538–543 (2000). ArticleCAS Google Scholar
Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem.270, 17442–17456 (1995). ArticleCAS Google Scholar
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett.407, 313–319 (1997). ArticleCAS Google Scholar
Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83, 129–135 (1995). ArticleCAS Google Scholar
McCormack, T. et al. Active site-directed inhibitors of Rhodococcus 20 S proteasome. Kinetics and mechanism. J. Biol. Chem.272, 26103–26109 (1997). ArticleCAS Google Scholar
Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA94, 6629–6634 (1997). ArticleCAS Google Scholar
Kisselev, A.F. & Goldberg, A.L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol.8, 739–758 (2001). ArticleCAS Google Scholar
Myung, J., Kim, K.B., Lindsten, K., Dantuma, N.P. & Crews, C.M. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol. Cell7, 411–420 (2001). ArticleCAS Google Scholar
van Leeuwen, F.W. et al. Frameshift mutants of β-amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science279, 242–247 (1998). ArticleCAS Google Scholar
Perutz, M.F. & Windle, A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature412, 143–144 (2001). ArticleCAS Google Scholar
Sisodia, S.S. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell95, 1–4 (1998). ArticleCAS Google Scholar
Lindsten, K. & Dantuma, N.P. Monitoring the ubiquitin/proteasome system in conformational diseases. Ageing Res. Rev. in the press.
French, B.A. et al. Aggresome formation in liver cells in response to different toxic mechanisms: role of the ubiquitin-proteasome pathway and the frameshift mutant of ubiquitin. Exp. Mol. Pathol.71, 241–246 (2001). ArticleCAS Google Scholar
Denk, H., Stumptner, C. & Zatloukal, K. Mallory bodies revisited. J. Hepatol.32, 689–702 (2000). ArticleCAS Google Scholar
Dallaporta, B. et al. Proteasome activation as a critical event of thymocyte apoptosis. Cell Death Differ.7, 368–373 (2000). ArticleCAS Google Scholar
Yang, Y., Fang, S., Jensen, J.P., Weissman, A.M. & Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science288, 874–877 (2000). ArticleCAS Google Scholar
Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272, 263–267 (1996). ArticleCAS Google Scholar