Wieb Van Der Meer, B., Coker, G. III & Simon Chen, S.-Y. Resonance Energy Transfer: Theory and Data (VCH, New York, 1994). Google Scholar
Hink, M.A., Bisselin, T. & Visser, A.J. Imaging protein–protein interactions in living cells. Plant Mol. Biol.50, 871–883 (2002). ArticleCASPubMed Google Scholar
Hoppe, A., Christensen, K. & Swanson, J.A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J.83, 3652–3664 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol.3, 906–918 (2002). ArticleCASPubMed Google Scholar
Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science300, 87–91 (2003). ArticleCASPubMed Google Scholar
Meyer, T. & Teruel, M.N. Fluorescence imaging of signaling networks. Trends Cell Biol.13, 101–106 (2003). ArticleCASPubMed Google Scholar
Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell4, 295–305 (2003). ArticleCASPubMed Google Scholar
Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol.160, 629–633 (2003). ArticleCASPubMedPubMed Central Google Scholar
Marriott, G. & Parker, I. (eds.). Biophotonics, Part A. Methods in Enzymology, vol. 360 (Academic Press, San Diego, CA, 2003). Google Scholar
Marriott, G. & Parker, I. (eds.). Biophotonics, Part B. Methods in Enzymology, vol. 361 (Academic Press, San Diego, CA, 2003). Google Scholar
Andrews, D.L. & Demidov, A.A. (eds.). Resonance Energy Transfer (John Wiley & Sons, Chicester, UK, 1999). Google Scholar
Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, 2002). Google Scholar
Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol.211, 353–388 (1992). ArticleCASPubMed Google Scholar
Clegg, R.M. Fluorescence resonance energy transfer (FRET) in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 179–252 (John Wiley & Sons, New York, 1996). Google Scholar
Edelhoch, H., Brand, L. & Wilchek, M. Fluorescence studies with tryptophyl peptides. Isr. J. Chem.1, 216–217 (1963). Google Scholar
Clegg, R.M., Holub, O. & Gohlke, C. Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Methods Enzymol.360, 509–542 (2003). ArticleCASPubMed Google Scholar
Förster, T. Delocalized excitation and excitation transer in Modern Quantum Chemistry Part III: Action of Light and Organic Crystals (ed. Sinanoglu, O.) 93–137 (Academic Press, New York, 1965). Google Scholar
Volkmer, A., Subramaniam, V., Birch, D.J. & Jovin, T.M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J.78, 1589–1598 (2000). ArticleCASPubMedPubMed Central Google Scholar
Subramaniam, V., Hanley, Q.S., Clayton, A.H.A. & Jovin, T.M. Photophysics of green and red fluorescent proteins: implications for quantitative microscopy. Methods Enzymol.360, 178–201 (2003). ArticleCASPubMed Google Scholar
Patterson, G.H., Piston, D.W. & Barisas, B.G. Förster distances between green fluorescent protein pairs. Anal. Biochem.284, 438–440 (2000). ArticleCASPubMed Google Scholar
Kuhn, H. in Physical Methods of Chemistry, vol. 1 (eds. Weissberger, A. & Rossiter, B.) 579–650 (John Wiley & Sons, New York, 1972). Google Scholar
Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig)8, 115–133 (1999). Article Google Scholar
Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy (SPEM)—a novel concept for optical resolution improvement. J. Opt. Soc. Am. A19, 1599–1609 (2002). Article Google Scholar
Jovin, T.M. & Arndt-Jovin, D.J. FRET microscopy: digital imaging of fluorescence resonance energy transfer. in Cell Structure and Function by Microspectrofluometry (eds. Kohen, E., Hirschberg, J.G. & Ploem, J.S.) 99–117 (Academic Press, London, 1989). Chapter Google Scholar
Bastiaens, P.I.H. & Jovin, T.M. Fluorescence resonance energy transfer microscopy in Cell Biology: A Laboratory Handbook, vol. 3, edn. 2 (ed. Celis, J.E.) 136–146 (Academic Press, New York, 1998). Google Scholar
Giordano, L., Jovin, T.M., Irie, M. & Jares-Erijman, E.A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc.124, 7481–7489 (2002). ArticleCASPubMed Google Scholar
Song, L., Jares-Erijman, E.A. & Jovin, T.M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. A150, 177–185 (2002). ArticleCAS Google Scholar
Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser. Optics Comm.130, 29–33 (1996). Article Google Scholar
Mekler, V.M. A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem. Photobiol.39, 615–620 (1994). Article Google Scholar
Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V. & Jovin, T.M. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J.83, 1631–1649 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lidke, D.S. et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans., 31, 1020–1027 (2003). ArticleCASPubMed Google Scholar
Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature422, 399–404 (2003). ArticleCASPubMed Google Scholar
Sato, M., Ozawa, T., Inukai, K., Asano, T. & Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol.20, 287–294 (2002). ArticleCASPubMed Google Scholar
Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science296, 913–916 (2002). ArticleCASPubMed Google Scholar
Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol.21, 539–545 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ozawa, T. & Umezawa, Y. Peptide assemblies in living cells. Methods for detecting protein–protein interactions. Supramol. Chem.14, 271–280 (2002). ArticleCAS Google Scholar
Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed. Neuron38, 225–235 (2003). ArticleCASPubMed Google Scholar
Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science296, 503–507 (2002). ArticleCASPubMed Google Scholar
Falk, M.M. Genetic tags for labelling live cells: gap junctions and beyond. Trends Cell Biol.12, 399–404 (2002). ArticleCASPubMed Google Scholar
Farinas, J. & Verkman, A.S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem.274, 7603–7606 (1999). ArticleCASPubMed Google Scholar
Karlström, A. & Nygren, P.-A. Dual labeling of a binding protein allows for specific fluorescence detection of native protein. Anal. Biochem.295, 22–30 (2001). ArticleCASPubMed Google Scholar
Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol.21, 41–46 (2003). ArticleCASPubMed Google Scholar
Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21, 47–51 (2003). ArticleCASPubMed Google Scholar
Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science300, 1434–1436 (2003). ArticleCASPubMed Google Scholar
Fancy, D.A. et al. Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Chem. Biol.7, 697–708 (2000). ArticleCASPubMed Google Scholar
Haustein, E., Jahnz, M. & Schwille, P. Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem4, 745–748 (2003). ArticleCASPubMed Google Scholar
Sauer, M. Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew. Chem. Int. Ed. Engl.42, 1790–1793 (2003). ArticleCASPubMed Google Scholar
Michalet, X. & Weiss, S. Single-molecule spectroscopy and microscopy. C.R. Phys.3, 619–644 (2002). ArticleCAS Google Scholar
Ishijima, A. & Yanagida, T. Single molecule nanobioscience. Trends Biochem. Sci.26, 438–444 (2001). ArticleCASPubMed Google Scholar
Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science300, 2061–2065 (2003). ArticleCASPubMed Google Scholar
Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science299, 682–686 (2003). ArticleCASPubMed Google Scholar
Widengren, J., Schweinberger, E., Berger, S. & Seidel, C.A.M. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A105, 6851–6866 (2001). ArticleCAS Google Scholar
Rocheleau, J.V., Wiseman, P.W. & Petersen, N.O. Isolation of bright aggregate fluctuations in a multipopulation image correlation spectroscopy system using intensity subtraction. Biophys. J.84, 4011–4022 (2003). ArticleCASPubMedPubMed Central Google Scholar
He, Y., Wang, G., Cox, J. & Geng, L. Two-dimensional fluorescence correlation spectroscopy with modulated excitation. Anal. Chem.73, 2302–2309 (2001). ArticleCASPubMed Google Scholar
Hopmeier, M., Guss, W., Deussen, M., Gobel, E.O. & Mahrt, R.F. Control of the energy transfer with the optical microcavity. Int. J. Mod. Phys. B15, 3704–3708 (2001). ArticleCAS Google Scholar
Shubeita, G.T., Sekatskii, S.K., Dietler, G. & Letokhov, V.S. Local fluorescent probes for the fluorescence resonance energy transfer scanning near-field optical microscopy. Appl. Phys. Lett.80, 2625–2627 (2002). ArticleCAS Google Scholar
Shubeita, G.T. et al. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. J. Microsc.210, 274–278 (2003). ArticleCASPubMed Google Scholar
Sekatskii, S.K., Chergui, M. & Dietler, G. Coherent fluorescence resonance energy transfer: construction of nonlocal multiparticle entangled states and quantum computing. Europhys. Lett.63, 21–27 (2003). ArticleCAS Google Scholar
Guijt-van Duijn, R.A. et al. Miniaturized analytical assays in biotechnology. Biotechnol. Adv.21, 431–444 (2003). ArticleCASPubMed Google Scholar
Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature411, 107–110 (2001). ArticleCASPubMed Google Scholar
Tramier, M. et al. Homo-FRET versus hetero-FRET to probe homodimers in living cells. Methods Enzymol.360, 580–597 (2003). ArticleCASPubMed Google Scholar
Krishnan, R.V., Varma, R. & Mayor, S. Fluorescence methods to probe nanometer-scale organization of molecules in living cell membranes. J. Fluoresc.11, 211–226 (2001). ArticleCAS Google Scholar
Wallrabe, H., Elangovan, M.A.B., Periasamy, A. & Barroso, M. Confocal FRET microscopy to measure clustering of ligand–receptor complexes in endocytic membranes. Biophys. J.85, 559–571 (2003). ArticleCASPubMedPubMed Central Google Scholar
Garini, Y., Katzir, N., Cabib, D. & Buckwald, R.A. Spectral bio-imaging in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 87–124 (John Wiley & Sons, New York, 1996). Google Scholar
Jares-Erijman, E. & Jovin, T.M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J. Mol. Biol.257, 597–617 (1996). ArticleCASPubMed Google Scholar
Hiraoka, Y., Shimi, T. & Haraguchi, T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct. Funct.27, 367–374 (2002). ArticlePubMed Google Scholar
Elangovan, M. et al. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods29, 58–73 (2003). ArticleCASPubMed Google Scholar
Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct.31, 275–302 (2002). ArticleCASPubMed Google Scholar
Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA96, 151–156 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gadella, T.W.J. Jr., van der Krogt, G.N.M. & Bisseling, T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci.4, 287–291 (1999). ArticlePubMed Google Scholar
Schönle, A., Glatz, M. & Hell, S.W. Four-dimensional multiphoton microscopy with time-correlated single-photon counting. Appl. Opt.39, 6306–6311 (2000). ArticlePubMed Google Scholar
Yu, W., Mantulin, W.W. & Gratton, E. Fluorescence lifetime imaging: new microscopy techniques in Emerging Tools for Single Cell Analysis (eds. Durack, G. & Robinson, J.P.) 139–173 (Wiley-Liss, New York, 2000). Chapter Google Scholar
Harpur, A.G., Wouters, F.S. & Bastiaens, P.I.H. Imaging FRET between spectrally similar GFP molecules in single cells. Nat. Biotechnol.19, 167–169 (2001). ArticleCASPubMed Google Scholar
Carlsson, K. & Philip, J. Theoretical investigation of the signal-to-noise-ratio for different fluorescence lifetime imaging techniques. SPIE Proc.4622, 70–78 (2002). Article Google Scholar
Elson, D.S. et al. Wide-field fluorescence lifetime imaging with optical sectioning and spectral resolution applied to biological samples. J. Mod. Opt.49, 985–995 (2002). Article Google Scholar
Gerritsen, H.C., Asselbergs, M.A.H., Agronskaia, A.V. & van Sark, W.G.J.H.M. Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Microsc.206, 218–224 (2002). ArticleCASPubMed Google Scholar
Calleja, V. et al. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem. J.372, 33–40 (2003). ArticleCASPubMedPubMed Central Google Scholar
Knemeyer, J.-P., Herten, D.-P. & Sauer, M. Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal. Chem.75, 2147–2153 (2003). ArticleCASPubMed Google Scholar
Krishnan, R.V., Saitoh, H., Terada, H., Centonze, V.E. & Herman, B. Development of a multiphoton fluorescence lifetime imaging microscopy (FLIM) system using a streak camera. Rev. Sci. Instrum.74, 2714–2721 (2003). ArticleCAS Google Scholar
Siegel, J. et al. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Rev. Sci. Instrum.74 (2003).
Jovin, T.M. & Arndt-Jovin, D.J. Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem.18, 271–308 (1989). ArticleCASPubMed Google Scholar
Young, R.M., Arnette, J.K., Roess, D.A. & Barisas, B.G. Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys. J.67, 881–888 (1994). ArticleCASPubMedPubMed Central Google Scholar
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol.2, 444–456 (2001). ArticleCASPubMed Google Scholar
Kenworthy, A.K. Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods24, 289–296 (2001). ArticleCASPubMed Google Scholar
Matkó, J., Jenei, A., Matyus, L., Ameloot, M. & Damjanovich, S. Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements. J. Photochem. Photobiol. B19, 71–73 (1993). Article Google Scholar
Runnels, L.W. & Scarlata, S.F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J.69, 1569–1583 (1995). ArticleCASPubMedPubMed Central Google Scholar
Yan, Y. & Marriott, G. Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy. Methods Enzymol.360, 561–580 (2003). ArticleCASPubMed Google Scholar
Buehler, C., Dong, C.Y., So, P.T.C., French, T. & Gratton, E. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy. Biophys. J.79, 536–549 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mathies, R.A., Peck, K. & Stryer, L. Optimization of high-sensitivity fluorescence detection. Anal. Chem.62, 1786–1791 (1990). ArticleCASPubMed Google Scholar
Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc.205, 109–112 (2002). ArticleCASPubMed Google Scholar