FRET imaging (original) (raw)

References

  1. Wieb Van Der Meer, B., Coker, G. III & Simon Chen, S.-Y. Resonance Energy Transfer: Theory and Data (VCH, New York, 1994).
    Google Scholar
  2. Hink, M.A., Bisselin, T. & Visser, A.J. Imaging protein–protein interactions in living cells. Plant Mol. Biol. 50, 871–883 (2002).
    Article CAS PubMed Google Scholar
  3. Hoppe, A., Christensen, K. & Swanson, J.A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652–3664 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  4. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).
    Article CAS PubMed Google Scholar
  5. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).
    Article CAS PubMed Google Scholar
  6. Meyer, T. & Teruel, M.N. Fluorescence imaging of signaling networks. Trends Cell Biol. 13, 101–106 (2003).
    Article CAS PubMed Google Scholar
  7. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).
    Article CAS PubMed Google Scholar
  8. Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  9. Marriott, G. & Parker, I. (eds.). Biophotonics, Part A. Methods in Enzymology, vol. 360 (Academic Press, San Diego, CA, 2003).
    Google Scholar
  10. Marriott, G. & Parker, I. (eds.). Biophotonics, Part B. Methods in Enzymology, vol. 361 (Academic Press, San Diego, CA, 2003).
    Google Scholar
  11. Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  12. Andrews, D.L. & Demidov, A.A. (eds.). Resonance Energy Transfer (John Wiley & Sons, Chicester, UK, 1999).
    Google Scholar
  13. Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, 2002).
    Google Scholar
  14. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).
    Article CAS PubMed Google Scholar
  15. Clegg, R.M. Fluorescence resonance energy transfer (FRET) in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 179–252 (John Wiley & Sons, New York, 1996).
    Google Scholar
  16. Edelhoch, H., Brand, L. & Wilchek, M. Fluorescence studies with tryptophyl peptides. Isr. J. Chem. 1, 216–217 (1963).
    Google Scholar
  17. Clegg, R.M., Holub, O. & Gohlke, C. Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Methods Enzymol. 360, 509–542 (2003).
    Article CAS PubMed Google Scholar
  18. Förster, T. Delocalized excitation and excitation transer in Modern Quantum Chemistry Part III: Action of Light and Organic Crystals (ed. Sinanoglu, O.) 93–137 (Academic Press, New York, 1965).
    Google Scholar
  19. Volkmer, A., Subramaniam, V., Birch, D.J. & Jovin, T.M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  20. Subramaniam, V., Hanley, Q.S., Clayton, A.H.A. & Jovin, T.M. Photophysics of green and red fluorescent proteins: implications for quantitative microscopy. Methods Enzymol. 360, 178–201 (2003).
    Article CAS PubMed Google Scholar
  21. Patterson, G.H., Piston, D.W. & Barisas, B.G. Förster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440 (2000).
    Article CAS PubMed Google Scholar
  22. Kuhn, H. in Physical Methods of Chemistry, vol. 1 (eds. Weissberger, A. & Rossiter, B.) 579–650 (John Wiley & Sons, New York, 1972).
    Google Scholar
  23. Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig) 8, 115–133 (1999).
    Article Google Scholar
  24. Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy (SPEM)—a novel concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).
    Article Google Scholar
  25. Jovin, T.M. & Arndt-Jovin, D.J. FRET microscopy: digital imaging of fluorescence resonance energy transfer. in Cell Structure and Function by Microspectrofluometry (eds. Kohen, E., Hirschberg, J.G. & Ploem, J.S.) 99–117 (Academic Press, London, 1989).
    Chapter Google Scholar
  26. Bastiaens, P.I.H. & Jovin, T.M. Fluorescence resonance energy transfer microscopy in Cell Biology: A Laboratory Handbook, vol. 3, edn. 2 (ed. Celis, J.E.) 136–146 (Academic Press, New York, 1998).
    Google Scholar
  27. Giordano, L., Jovin, T.M., Irie, M. & Jares-Erijman, E.A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124, 7481–7489 (2002).
    Article CAS PubMed Google Scholar
  28. Song, L., Jares-Erijman, E.A. & Jovin, T.M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. A 150, 177–185 (2002).
    Article CAS Google Scholar
  29. Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser. Optics Comm. 130, 29–33 (1996).
    Article Google Scholar
  30. Mekler, V.M. A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem. Photobiol. 39, 615–620 (1994).
    Article Google Scholar
  31. Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V. & Jovin, T.M. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 83, 1631–1649 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  32. Lidke, D.S. et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans., 31, 1020–1027 (2003).
    Article CAS PubMed Google Scholar
  33. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).
    Article CAS PubMed Google Scholar
  34. Sato, M., Ozawa, T., Inukai, K., Asano, T. & Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol. 20, 287–294 (2002).
    Article CAS PubMed Google Scholar
  35. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).
    Article CAS PubMed Google Scholar
  36. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  37. Ozawa, T. & Umezawa, Y. Peptide assemblies in living cells. Methods for detecting protein–protein interactions. Supramol. Chem. 14, 271–280 (2002).
    Article CAS Google Scholar
  38. Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed. Neuron 38, 225–235 (2003).
    Article CAS PubMed Google Scholar
  39. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).
    Article CAS PubMed Google Scholar
  40. Falk, M.M. Genetic tags for labelling live cells: gap junctions and beyond. Trends Cell Biol. 12, 399–404 (2002).
    Article CAS PubMed Google Scholar
  41. Farinas, J. & Verkman, A.S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).
    Article CAS PubMed Google Scholar
  42. Karlström, A. & Nygren, P.-A. Dual labeling of a binding protein allows for specific fluorescence detection of native protein. Anal. Biochem. 295, 22–30 (2001).
    Article CAS PubMed Google Scholar
  43. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).
    Article CAS PubMed Google Scholar
  44. Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).
    Article CAS PubMed Google Scholar
  45. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).
    Article CAS PubMed Google Scholar
  46. Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).
    Article CAS PubMed Google Scholar
  47. Fancy, D.A. et al. Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Chem. Biol. 7, 697–708 (2000).
    Article CAS PubMed Google Scholar
  48. Haustein, E., Jahnz, M. & Schwille, P. Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem 4, 745–748 (2003).
    Article CAS PubMed Google Scholar
  49. Sauer, M. Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew. Chem. Int. Ed. Engl. 42, 1790–1793 (2003).
    Article CAS PubMed Google Scholar
  50. Michalet, X. & Weiss, S. Single-molecule spectroscopy and microscopy. C.R. Phys. 3, 619–644 (2002).
    Article CAS Google Scholar
  51. Ishijima, A. & Yanagida, T. Single molecule nanobioscience. Trends Biochem. Sci. 26, 438–444 (2001).
    Article CAS PubMed Google Scholar
  52. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).
    Article CAS PubMed Google Scholar
  53. Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
    Article CAS PubMed Google Scholar
  54. Widengren, J., Schweinberger, E., Berger, S. & Seidel, C.A.M. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105, 6851–6866 (2001).
    Article CAS Google Scholar
  55. Rocheleau, J.V., Wiseman, P.W. & Petersen, N.O. Isolation of bright aggregate fluctuations in a multipopulation image correlation spectroscopy system using intensity subtraction. Biophys. J. 84, 4011–4022 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  56. He, Y., Wang, G., Cox, J. & Geng, L. Two-dimensional fluorescence correlation spectroscopy with modulated excitation. Anal. Chem. 73, 2302–2309 (2001).
    Article CAS PubMed Google Scholar
  57. Hopmeier, M., Guss, W., Deussen, M., Gobel, E.O. & Mahrt, R.F. Control of the energy transfer with the optical microcavity. Int. J. Mod. Phys. B 15, 3704–3708 (2001).
    Article CAS Google Scholar
  58. Shubeita, G.T., Sekatskii, S.K., Dietler, G. & Letokhov, V.S. Local fluorescent probes for the fluorescence resonance energy transfer scanning near-field optical microscopy. Appl. Phys. Lett. 80, 2625–2627 (2002).
    Article CAS Google Scholar
  59. Shubeita, G.T. et al. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. J. Microsc. 210, 274–278 (2003).
    Article CAS PubMed Google Scholar
  60. Sekatskii, S.K., Chergui, M. & Dietler, G. Coherent fluorescence resonance energy transfer: construction of nonlocal multiparticle entangled states and quantum computing. Europhys. Lett. 63, 21–27 (2003).
    Article CAS Google Scholar
  61. Guijt-van Duijn, R.A. et al. Miniaturized analytical assays in biotechnology. Biotechnol. Adv. 21, 431–444 (2003).
    Article CAS PubMed Google Scholar
  62. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).
    Article CAS PubMed Google Scholar
  63. Tramier, M. et al. Homo-FRET versus hetero-FRET to probe homodimers in living cells. Methods Enzymol. 360, 580–597 (2003).
    Article CAS PubMed Google Scholar
  64. Krishnan, R.V., Varma, R. & Mayor, S. Fluorescence methods to probe nanometer-scale organization of molecules in living cell membranes. J. Fluoresc. 11, 211–226 (2001).
    Article CAS Google Scholar
  65. Wallrabe, H., Elangovan, M.A.B., Periasamy, A. & Barroso, M. Confocal FRET microscopy to measure clustering of ligand–receptor complexes in endocytic membranes. Biophys. J. 85, 559–571 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  66. Garini, Y., Katzir, N., Cabib, D. & Buckwald, R.A. Spectral bio-imaging in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 87–124 (John Wiley & Sons, New York, 1996).
    Google Scholar
  67. Jares-Erijman, E. & Jovin, T.M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J. Mol. Biol. 257, 597–617 (1996).
    Article CAS PubMed Google Scholar
  68. Hiraoka, Y., Shimi, T. & Haraguchi, T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct. Funct. 27, 367–374 (2002).
    Article PubMed Google Scholar
  69. Elangovan, M. et al. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29, 58–73 (2003).
    Article CAS PubMed Google Scholar
  70. Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002).
    Article CAS PubMed Google Scholar
  71. Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  72. Gadella, T.W.J. Jr., van der Krogt, G.N.M. & Bisseling, T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4, 287–291 (1999).
    Article PubMed Google Scholar
  73. Schönle, A., Glatz, M. & Hell, S.W. Four-dimensional multiphoton microscopy with time-correlated single-photon counting. Appl. Opt. 39, 6306–6311 (2000).
    Article PubMed Google Scholar
  74. Yu, W., Mantulin, W.W. & Gratton, E. Fluorescence lifetime imaging: new microscopy techniques in Emerging Tools for Single Cell Analysis (eds. Durack, G. & Robinson, J.P.) 139–173 (Wiley-Liss, New York, 2000).
    Chapter Google Scholar
  75. Harpur, A.G., Wouters, F.S. & Bastiaens, P.I.H. Imaging FRET between spectrally similar GFP molecules in single cells. Nat. Biotechnol. 19, 167–169 (2001).
    Article CAS PubMed Google Scholar
  76. Carlsson, K. & Philip, J. Theoretical investigation of the signal-to-noise-ratio for different fluorescence lifetime imaging techniques. SPIE Proc. 4622, 70–78 (2002).
    Article Google Scholar
  77. Elson, D.S. et al. Wide-field fluorescence lifetime imaging with optical sectioning and spectral resolution applied to biological samples. J. Mod. Opt. 49, 985–995 (2002).
    Article Google Scholar
  78. Gerritsen, H.C., Asselbergs, M.A.H., Agronskaia, A.V. & van Sark, W.G.J.H.M. Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Microsc. 206, 218–224 (2002).
    Article CAS PubMed Google Scholar
  79. Hanley, Q.S., Arndt-Jovin, D.J. & Jovin, T.M. Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spectrosc. 56, 155–166 (2002).
    Article CAS Google Scholar
  80. Calleja, V. et al. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem. J. 372, 33–40 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  81. Knemeyer, J.-P., Herten, D.-P. & Sauer, M. Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal. Chem. 75, 2147–2153 (2003).
    Article CAS PubMed Google Scholar
  82. Krishnan, R.V., Saitoh, H., Terada, H., Centonze, V.E. & Herman, B. Development of a multiphoton fluorescence lifetime imaging microscopy (FLIM) system using a streak camera. Rev. Sci. Instrum. 74, 2714–2721 (2003).
    Article CAS Google Scholar
  83. Siegel, J. et al. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Rev. Sci. Instrum. 74 (2003).
  84. Jovin, T.M. & Arndt-Jovin, D.J. Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem. 18, 271–308 (1989).
    Article CAS PubMed Google Scholar
  85. Young, R.M., Arnette, J.K., Roess, D.A. & Barisas, B.G. Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys. J. 67, 881–888 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  86. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).
    Article CAS PubMed Google Scholar
  87. Kenworthy, A.K. Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods 24, 289–296 (2001).
    Article CAS PubMed Google Scholar
  88. Matkó, J., Jenei, A., Matyus, L., Ameloot, M. & Damjanovich, S. Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements. J. Photochem. Photobiol. B 19, 71–73 (1993).
    Article Google Scholar
  89. Runnels, L.W. & Scarlata, S.F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 69, 1569–1583 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  90. Yan, Y. & Marriott, G. Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy. Methods Enzymol. 360, 561–580 (2003).
    Article CAS PubMed Google Scholar
  91. Buehler, C., Dong, C.Y., So, P.T.C., French, T. & Gratton, E. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy. Biophys. J. 79, 536–549 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  92. Mathies, R.A., Peck, K. & Stryer, L. Optimization of high-sensitivity fluorescence detection. Anal. Chem. 62, 1786–1791 (1990).
    Article CAS PubMed Google Scholar
  93. Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc. 205, 109–112 (2002).
    Article CAS PubMed Google Scholar

Download references