Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction (original) (raw)
References
Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol.2, 127–137 (2001). ArticleCAS Google Scholar
Jorissen, R.N. et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res.284, 31–53 (2003). ArticleCAS Google Scholar
Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell110, 669–672 (2002). ArticleCAS Google Scholar
Gadella, T.W.J. Jr. & Jovin, T.M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol.129, 1543–1558 (1995). ArticleCAS Google Scholar
Moriki, T., Maruyama, H. & Maruyama, I.N. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J. Mol. Biol.311, 1011–1026 (2001). ArticleCAS Google Scholar
Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol.2, 168–172 (2000). ArticleCAS Google Scholar
Hynes, N.E., Horsch, K., Olayioye, M.A. & Badache, A. The ErbB receptor tyrosine family as signal integrators. Endocr. Relat. Cancer8, 151–159 (2001). ArticleCAS Google Scholar
Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21, 47–51 (2003). ArticleCAS Google Scholar
Gulliford, T.J., Huang, G.C., Ouyang, X. & Epstein, R.J. Reduced ability of transforming growth factor-alpha to induce EGF receptor heterodimerization and downregulation suggests a mechanism of oncogenic synergy with ErbB2. Oncogene15, 2219–2223 (1997). ArticleCAS Google Scholar
Olayioye, M.A., Beuvink, I., Horsch, K., Daly, J.M. & Hynes, N.E. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J. Biol. Chem.274, 17209–17218 (1999). ArticleCAS Google Scholar
Cho, H.S. & Leahy, D.J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science297, 1330–1333 (2002). ArticleCAS Google Scholar
Cho, H.S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature421, 756–760 (2003). ArticleCAS Google Scholar
Ferguson, K.M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell11, 507–517 (2003). ArticleCAS Google Scholar
Garrett, T.P.J. et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell11, 495–505 (2003). ArticleCAS Google Scholar
Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell110, 775–787 (2002). ArticleCAS Google Scholar
Nagy, P. et al. Lipid rafts and the local density of ErbB proteins influence the biological role of homo- and heteroassociations of ErbB2. J. Cell Sci.115, 4251–4262 (2002). ArticleCAS Google Scholar
Martin-Fernandez, M., Clarke, D.T., Tobin, M.J., Jones, S.V. & Jones, G.R. Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling. Biophys. J.82, 2415–2427. (2002). ArticleCAS Google Scholar
Lidke, D.S. et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans.31, 1020–1027 (2003). ArticleCAS Google Scholar
Deb, T.B. et al. Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF. J. Biol. Chem.276, 15554–15560 (2001). ArticleCAS Google Scholar
Mendrola, J.M., Berger, M.B., King, M.C. & Lemmon, M.A. The single transmembrane domains of erbB receptors self-associate in cell membranes. J. Biol. Chem.277, 4704–4712 (2002). ArticleCAS Google Scholar
Graus-Porta, D., Beerli, R.R., Daly, J.M. & Hynes, N.E. ErbB-2, the preferred heterodimerization partner of all erbB receptors, is a mediator of lateral signaling. EMBO J.16, 1647–1655 (1997). ArticleCAS Google Scholar
Wang, Z., Zhang, L., Yeung, T.K. & Chen, X. Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol. Biol. Cell10, 1621–1636 (1999). ArticleCAS Google Scholar
Wilkinson, J.C. & Staros, J.V. Effect of ErbB2 coexpression on the kinetic interactions of epidermal growth factor with its receptor in intact cells. Biochemistry41, 8–14 (2002). ArticleCAS Google Scholar
Nagy, P., Arndt-Jovin, D. & Jovin, T.M. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp. Cell Res.285, 39–49 (2003). ArticleCAS Google Scholar
Bridges, A.J. et al. Tyrosine kinase inhibitors. 8. An unusually steep structure-activity relationship for analogues of 4-(3-bromoanilino)-6,7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor. J. Med. Chem.39, 267–276 (1996). ArticleCAS Google Scholar
Hasson, T. Myosin VI: two distinct roles in endocytosis. J. Cell Sci.116, 3453–3461 (2003). ArticleCAS Google Scholar
Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol.12, 112–120 (2002). ArticleCAS Google Scholar
Sliwkowski, M.X. et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem.269, 14661–14665 (1994). CASPubMed Google Scholar
Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science302, 442–445 (2003). ArticleCAS Google Scholar
Brock, R., Hamelers, I.H. & Jovin, T.M. Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry35, 353–362 (1999). ArticleCAS Google Scholar
Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science296, 913–916 (2002). ArticleCAS Google Scholar